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Development in a bubble
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Application background
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ATHLET COCOSYSATHLET-CD

NuT

Linear algebra support

PETSc

AC²

Conservation of mass, energy, momentum for liquid and vapor

Spatial discretization by finite volume approach (1-dim)

Stiff initial value problem

Plethora of sparse linear systems to solve



Software architecture in AC²
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Due to plugin concept NuT (and PETSc) are completeley optional user

Fortran Development Extensions
plugin, hooks, hashmaps and lots more
gitlab.com/Zorkator/libfde – LGPL v3

dev

MPI for Multiple Applications
initiate communication
gitlab.com/nordfox/mma – BSD-2

Fortran Fortran

C++

C/C++

C

C/C++

https://gitlab.com/Zorkator/libfde
https://gitlab.com/nordfox/mma


Providing data
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NuT
+ plugin / fmods

ATHLET

COCOSYS

ATHLET-CD

native Git repository mirror object storage

All data is made available locally on
• self-managed GitLab instance or
• dedicated object storage (MinIO)

PETSc

MUMPS

METIS

Intel® MKL
offline installer

gitlab/petsc

bitbucket/petsc/pkg-mumps

bitbucket/petsc/pkg-metis

FDE MMA
gitlab/…/libfde gitlab/…/mma

qa

depl

• versioning
• easy and reliable access

Intel® MPI
offline installer

compilers
offline installer

Docker
images

build / test
environments



Making PETSc available – the PETSc Builder project
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Pre-build PETSc and create suitable archive
• devs don‘t need to bother with details, no dedicated environment required (no Cygwin!)
• use dedicated branches from mirrors (minor build-fixes, added licenses)
• use Docker executor to provide clean and reproducable build environment
• ensure binary compatibility by using build environment defined by internal coding policy

devs
legal

dev

qa

1. install MKL
2. configure and build PETSc

• plus MUMPS and METIS
3. discard unnecessary files
4. create archive

• lib binaries
• header files
• licenses

manual job to upload archive to
package registry if things are fine

petsc_3.17.5-grs1_build. /
467.43599_ /
21.0-windows-1809.zip

qa

• PETSC_VERSION_NAME
• CI_PROJECT_ID
• CI_PIPELINE_ID
• IMAGE_TAG

CI-pipeline



CMake in breve
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• popular build tools like make and
Visual Studio supported

• scopes of settings defined by
hierarchical order of CMakeLists files

Without a build system, a project is just a collection of files. CMake brings some order
to this, starting with a human-readable file called CMakeLists.txt that defines

• what should be built and how,
• what tests to run and
• what package(s) to create.

This file is a platform independent description of the whole project, which CMake
then turns into platform specific build tool project files.

Professional CMake: A Practical Guide – Craig Scott, Ch. 2, add. formatting

Configure Generate Build tool
project files

• dedicated build-folder • easy to run, some work to set up

depl

dev



Using CMake(It)
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cmi_add_git(nut ssh://git@gitlab.grs.de/grs/ac2/nut/nut.git <commit-id>)
...
cmi_add_subdirectory(nut) 

• git clone nut <commit-id> to _externals/nut

• run NuT‘s root CMakeLists.txt

generate target to produce NuT’s host-sided interfaces (.fmod,.h,.hpp) based on .json input

NuT

ATHLET / COCOSYS root CMakeLists.txt

if(BUILD_NUT) # set by user or by AC² deployment
cmi_add_archive(petsc "${AC2_PACKAGE_REGISTRY}/petsc/<petsc-archive>")
cmi_add_subdirectory(petsc NO_CMAKE)

download archive and extract to _externals/<petsc-archive>

set up dependency on libpetsc and create build targets for NuT

continue creating build targets for ATHLET / COCOSYS

CMakeIt (cmi): gitlab.com/nordfox/cmakeit – BSD-2 dev depl

https://gitlab.com/nordfox/cmakeit


AC² deployment
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includes storing
of licenses

building of applications including NuT

PETSc as pre-built library included

(self-extracting) archives
including all required files

to run applications

• application data
• runtimes
• libpetsc
• mpiexec

BUILD_NUT = 1

stored in 
Releases

clean test
environments by
Docker images
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legal qa

dev

CI-pipeline



Usability
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mpiexec -n 1 nut_host_ex01 : -n 1 nut_worker

default settings

mpiexec -n 1 nut_host_ex01 : -n 1 nut_worker –solver ilu_2-gmres

specific solver preset

mpiexec -n 1 nut_host_ex01 : -n 2 nut_worker -<dev_flag> –ksp_view

unlock arbitrary petsc command line options

NuT via GUI

user



AC²

Summary
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We presented an approach how to incorporate

PETSc into a multiple applications architecture

complying with the requirements of several parties. 

petsc NuT

PETSc

Tools:
• GitLab and its CI feature
• CMake
• Docker

Additional free software:
• CMakeIt: gitlab.com/nordfox/cmakeit
• MMA: gitlab.com/nordfox/mma
• FDE: gitlab.com/Zorkator/libfde

Thank you for your
attention!

https://gitlab.com/nordfox/cmakeit
https://gitlab.com/nordfox/mma
https://gitlab.com/Zorkator/libfde

