
Software Development and Deployment 
Including PETSc
Volker Jacht, Tim Steinhoff, GRS

2023-06-05
PETSc Annual Meeting 2023



Development in a bubble

Software D&D Including PETSc - Jacht, Steinhoff 2

head

dev

you

legal

user

qa

depl

your
appPETSc

appA
appB

appC

dev dev

user user

GUI

user user

Make it
work

Adhere to QA 
standards

Bringschuld

Provide licenses and 
ensure compatibility

K.I.S.S., please
Don‘t break current use

Don’t mess with 
our build process

Don’t mess with 
our development

, not



Application background

Software D&D Including PETSc - Jacht, Steinhoff 3

ATHLET COCOSYSATHLET-CD

NuT

Linear algebra support

PETSc

AC²

Conservation of mass, energy, momentum for liquid and vapor

Spatial discretization by finite volume approach (1-dim)

Stiff initial value problem

Plethora of sparse linear systems to solve



Software architecture in AC²

Software D&D Including PETSc - Jacht, Steinhoff 4

NuTPETScMUMPS
METIS

Intel® MKL

lib_nutcore
static liblib

pe
ts

c

shared lib

ATHLET-CD
plugin

COCO1 COCO2

COCO4COCO3

MMA

ATHLET
(wrapper opt.)

FDE

NuT-plugin
NuT
fmods

NuT
fmods

NuT-plugin

uses MPI

MPI communication

COCOSYS process group

shared libshared lib

ATHLET process

NuT process group

sh
ar

ed
lib

s

driver, opt.

Due to plugin concept NuT (and PETSc) are completeley optional user

Fortran Development Extensions
plugin, hooks, hashmaps and lots more
gitlab.com/Zorkator/libfde – LGPL v3

dev

MPI for Multiple Applications
initiate communication
gitlab.com/nordfox/mma – BSD-2

Fortran Fortran

C++

C/C++

C

C/C++

https://gitlab.com/Zorkator/libfde
https://gitlab.com/nordfox/mma


Providing data

Software D&D Including PETSc - Jacht, Steinhoff 5

NuT
+ plugin / fmods

ATHLET

COCOSYS

ATHLET-CD

native Git repository mirror object storage

All data is made available locally on
• self-managed GitLab instance or
• dedicated object storage (MinIO)

PETSc

MUMPS

METIS

Intel® MKL
offline installer

gitlab/petsc

bitbucket/petsc/pkg-mumps

bitbucket/petsc/pkg-metis

FDE MMA
gitlab/…/libfde gitlab/…/mma

qa

depl

• versioning
• easy and reliable access

Intel® MPI
offline installer

compilers
offline installer

Docker
images

build / test
environments



Making PETSc available – the PETSc Builder project

Software D&D Including PETSc - Jacht, Steinhoff 6

Pre-build PETSc and create suitable archive
• devs don‘t need to bother with details, no dedicated environment required (no Cygwin!)
• use dedicated branches from mirrors (minor build-fixes, added licenses)
• use Docker executor to provide clean and reproducable build environment
• ensure binary compatibility by using build environment defined by internal coding policy

devs
legal

dev

qa

1. install MKL
2. configure and build PETSc

• plus MUMPS and METIS
3. discard unnecessary files
4. create archive

• lib binaries
• header files
• licenses

manual job to upload archive to
package registry if things are fine

petsc_3.17.5-grs1_build. /
467.43599_ /
21.0-windows-1809.zip

qa

• PETSC_VERSION_NAME
• CI_PROJECT_ID
• CI_PIPELINE_ID
• IMAGE_TAG

CI-pipeline



CMake in breve

Software D&D Including PETSc - Jacht, Steinhoff 7

• popular build tools like make and
Visual Studio supported

• scopes of settings defined by
hierarchical order of CMakeLists files

Without a build system, a project is just a collection of files. CMake brings some order
to this, starting with a human-readable file called CMakeLists.txt that defines

• what should be built and how,
• what tests to run and
• what package(s) to create.

This file is a platform independent description of the whole project, which CMake
then turns into platform specific build tool project files.

Professional CMake: A Practical Guide – Craig Scott, Ch. 2, add. formatting

Configure Generate Build tool
project files

• dedicated build-folder • easy to run, some work to set up

depl

dev



Using CMake(It)

Software D&D Including PETSc - Jacht, Steinhoff 8

cmi_add_git(nut ssh://git@gitlab.grs.de/grs/ac2/nut/nut.git <commit-id>)
...
cmi_add_subdirectory(nut) 

• git clone nut <commit-id> to _externals/nut

• run NuT‘s root CMakeLists.txt

generate target to produce NuT’s host-sided interfaces (.fmod,.h,.hpp) based on .json input

NuT

ATHLET / COCOSYS root CMakeLists.txt

if(BUILD_NUT) # set by user or by AC² deployment
cmi_add_archive(petsc "${AC2_PACKAGE_REGISTRY}/petsc/<petsc-archive>")
cmi_add_subdirectory(petsc NO_CMAKE)

download archive and extract to _externals/<petsc-archive>

set up dependency on libpetsc and create build targets for NuT

continue creating build targets for ATHLET / COCOSYS

CMakeIt (cmi): gitlab.com/nordfox/cmakeit – BSD-2 dev depl

https://gitlab.com/nordfox/cmakeit


AC² deployment

Software D&D Including PETSc - Jacht, Steinhoff 9

includes storing
of licenses

building of applications including NuT

PETSc as pre-built library included

(self-extracting) archives
including all required files

to run applications

• application data
• runtimes
• libpetsc
• mpiexec

BUILD_NUT = 1

stored in 
Releases

clean test
environments by
Docker images

depl

user

legal qa

dev

CI-pipeline



Usability

Software D&D Including PETSc - Jacht, Steinhoff 10

mpiexec -n 1 nut_host_ex01 : -n 1 nut_worker

default settings

mpiexec -n 1 nut_host_ex01 : -n 1 nut_worker –solver ilu_2-gmres

specific solver preset

mpiexec -n 1 nut_host_ex01 : -n 2 nut_worker -<dev_flag> –ksp_view

unlock arbitrary petsc command line options

NuT via GUI

user



AC²

Summary

Software D&D Including PETSc - Jacht, Steinhoff 11

dev

head
qa

user

depl

legal

We presented an approach how to incorporate

PETSc into a multiple applications architecture

complying with the requirements of several parties. 

petsc NuT

PETSc

Tools:
• GitLab and its CI feature
• CMake
• Docker

Additional free software:
• CMakeIt: gitlab.com/nordfox/cmakeit
• MMA: gitlab.com/nordfox/mma
• FDE: gitlab.com/Zorkator/libfde

Thank you for your
attention!

https://gitlab.com/nordfox/cmakeit
https://gitlab.com/nordfox/mma
https://gitlab.com/Zorkator/libfde

