PETSc in the lonosphere

Matt Young (he/him)
PETSc Users Meeting 2023

The lonosphere

The lonosphere

N₂ density ~ 10⁶ times NO⁺ or O₂⁺ density

In the E-Region...

E-Region Instabilities

$$\partial_t \mathbf{B} = \mathbf{0}$$
 (electrostatic)

Relative perturbed density:

$$\frac{\delta n}{n_0} = \frac{n_1 - n_0}{n_0}$$
Background

In the wave frame

Secondary FBI from GDI

$$\frac{\delta n}{n_0} \sim \frac{\delta E_x}{E_0}$$

$$\bullet \mathbf{B}_0 \quad \mathbf{E}_0 \times \mathbf{B}_0 \left(\hat{x} \right) \longrightarrow$$

Irregularity Spectrum

The high-level goal is to understand the spectrum of density irregularities in the ionosphere because they cause electromagnetic (e.g., GPS) scintillation.

Previous Simulations

Previous Simulations

The PIC Cycle

Quasineutral Hybrid Model

Full PIC

- Must resolve electron dynamical scales
 - plasma frequency
 - Debye length
- Allows non-Maxwellian electrons and ions

Hybrid PIC

- Must resolve ion dynamical scales
 - ion-neutral collision frequency
 - ion mean free path
- Assumes fluid electrons

Plasma frequency: the fundamental oscillation frequency of electrons about their neighboring ions.

Debye length: the length beyond which electrons shield the positive charge of ions.

$$\omega_{pe} \equiv \sqrt{\frac{ne^2}{\epsilon_0 m_e}}$$

$$\lambda_{De} \equiv \sqrt{\frac{\epsilon_0 k_B T_e}{ne^2}}$$

Quasineutral Hybrid Model

Kinetic Model

Poisson's equation provides the electrostatic potential

$$\nabla^2 \phi = \frac{\rho_c}{\epsilon_0} = \frac{1}{\epsilon_0} \sum_s q_s n_s$$

Quasineutral Model

$$abla^2\phi=0$$
 (not useful)

We assume electrons are inertialess, then solve for potential

$$0 = -ne\left(\mathbf{E}_0 - \nabla\phi + \mathbf{u}_e \times \mathbf{B}_0\right) - \nabla \cdot \mathbf{P}_e - nm_e\nu_e\mathbf{u}_e$$

Quasineutral Potential Equation

$$\mathsf{R} \equiv \left(\begin{array}{cccc} 1 + \kappa_x^2 & \kappa_y \kappa_x - \kappa_z & \kappa_z \kappa_x + \kappa_y \\ \kappa_x \kappa_y + \kappa_z & 1 + \kappa_y^2 & \kappa_z \kappa_y - \kappa_x \\ \kappa_x \kappa_z - \kappa_y & \kappa_y \kappa_z + \kappa_x & 1 + \kappa_z^2 \end{array} \right) \quad \text{magnetization} \quad \text{tensor}$$

$$\kappa_j \equiv \frac{\Omega_j}{\nu_e} = \frac{eB_j}{m_e\nu_e} = \frac{\text{average number of gyro-orbits}}{\text{average number of collisions}}$$

magnetization definition

The PIC Cycle

The PIC Cycle

Discrete Potential Equation

$$\nabla \cdot (n\mathsf{R}\nabla \phi) = f\left(n, \mathbf{\Gamma}, \dots\right) \quad \longrightarrow \quad \mathsf{A}\mathbf{x} = \mathbf{b}$$

$$\begin{split} \nabla \cdot (n\mathsf{R}\nabla\phi) \approx & \quad \frac{[(n\mathsf{R}\nabla\phi) \cdot \hat{x}]_{i+1/2} - [(n\mathsf{R}\nabla\phi) \cdot \hat{x}]_{i-1/2}}{\Delta x} \\ & \quad + \frac{[(n\mathsf{R}\nabla\phi) \cdot \hat{y}]_{j+1/2} - [(n\mathsf{R}\nabla\phi) \cdot \hat{y}]_{j-1/2}}{\Delta y} \\ & \quad + \frac{[(n\mathsf{R}\nabla\phi) \cdot \hat{z}]_{k+1/2} - [(n\mathsf{R}\nabla\phi) \cdot \hat{z}]_{k-1/2}}{\Delta z} \end{split}$$

19-point stencil

Discrete Stencil

$$\nabla \cdot (n\mathsf{R}\nabla \phi) = f\left(n, \mathbf{\Gamma}, \dots\right) \quad \longrightarrow \quad \mathsf{A}\mathbf{x} = \mathbf{b}$$


```
In EPPIC main:
... non-PETSc setup
#if HAVE_PETSC
  PetscInitialize(...);
 KSPCreate(...);
 KSPGetPC(...);
 PCSetFromOptions(...);
  KSPSetFromOptions(...);
#endif
... more non-PETSc stuff
#if HAVE_PETSC
 MatCreate(..., &A);
 MatSetSizes(...);
 MatSetType(...);
  MatSetFromOptions(...);
#endif
```

```
In EPPIC field solver:
         VecCreate(..., &b);
         VecSetSizes (...);
         VecSetFromOptions(...);
         VecDuplicate(b, &x);
         ... call custom function to fill b -
         ... call custom function to fill A
         KSPSetOperators(...);
         KSPSolve(...);
         ... copy x to potential array
LHS
MatGetOwnershipRange(A, ...); VecGetOwnershipRange(b, ...);
for local row in A {
                               for local row in b {
                                 ... get node density and flux
  ... get density at local nodes
  ... define indices and values ... compute value
  MatSetValues(A, ...);
                               VecSetValue(b, ...);
    assemble A
                                ... assemble b
```

- This is all fine, but PETSc functionality is hacked in as an afterthought.
- Non-periodic boundary conditions in EPPIC are not as well developed as periodic BC.
- There is limited documentation
- EPPIC only supports domain decomposition along the x dimension
- The EPPIC source code and build system are not especially approachable to new users
- EPPIC is not truly open source
- There have been multiple development philosophies with limited coordination

Recent development of a hybrid simulation built on PETSc's DMDA and DMSWARM objects:

- Use a DMSWARM to manage ions
- Use one DMDA to manage density and flux (collected from ion distribution)
- Use another DMDA to manage electrostatic potential (computed from density and flux)
- Separate executables for full simulation and standalone potential solver
- Eventually support multiple fluid electron models and ion-neutral collision models

```
PetscCall(SetUpVlasovDM(&ctx));
PetscCall(SetUpIonsDM(&ctx));
PetscCall(InitializePositions(&ctx));
PetscCall(InitializeVelocities(&ctx));
PetscCall (CollectVlasovQuantities (&ctx));
PetscCall(SetUpPotentialDM(&pdm, &ctx));
PetscCall(KSPCreate(PETSC_COMM_WORLD, &ksp));
... standard KSP setup
PetscCall(ComputePotential(ksp, &ctx));
... begin time-step loop
  PetscCall (UpdateVelocities (ksp, &ctx));
  PetscCall (UpdatePositions (&ctx));
 PetscCall(CollectVlasovQuantities(&ctx));
 PetscCall(ComputePotential(ksp, &ctx));
```


Stand-alone solver will allow us to test algorithms on a set of reference inputs.

Summary

- The collisionality of the ionospheric E region leads to unique plasma instabilities
- The Farley-Buneman and gradient drift instabilities couple energy across spatial scales
- A hybrid PIC simulation allows us to focus on ion temporal and spatial scales
- A new PETSc-based implementation of the hybrid code is in development

Acknowledgements

This research was supported by the NASA Heliophysics Living With a Star (H-LWS) program via award number 80NSSC21K1322

Thank You

Appendix