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Maximal-margin classifier (SVM)

Let X be a matrix of features associated with
samples and y be a vector of labels:
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We look for a hyperplane

H: (w,z)+ b =0, (1)

such that
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(w,z) + b< —1 ... (Class B).



Maximal-margin classifier (SVM)

Real world data are not linearly separable!

We introduce a miclassification error term (hinge loss
function) for each sample x; such that:

& = max{0,1 — y; ({(w, x;) — b)}. (2)

Feature #2

This function quantifies error between predicted and
right classification of sample «; as distance between
hyperplane and misclassified sample.
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Relaxed-bias classifier

The standard soft-margin SVM solves a problem of finding a classification model in the form of the
maximal-margin hyperplane; the dual formulation of the primal #1-loss SVM takes a following form:

1 o< a<C(Ce,
argmin ~a' Y/KYa—a'e st. - (3)
= 2 = y a=0.

In the case of the relaxed-bias classification, we do not consider bias b in a classification model, but we
include it into the problem by means of augmenting the vector w and each sample sample «; with an

@e[ﬂ, aem (4)

where b € R, and v € R is a user defined variable, which is typically set to 1. In a fact, we consider

additional dimension so that:

the bias B as a user-defined parameter (similar to the Deep Neural Networks).



Relaxed-bias classifier

Let p € {1,2} for purposes related to our application, then the problem of finding hyperplane
H = (w, x) can be formulated as a constrained optimization problem in the following primal
formulation:
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For both p =1 and p = 2, we can dualize the primal formulation (5) using the Lagrange duality so
that:
1 7 T
argmin S Ha—a'e st. 0 < a < Ce, (6)
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respectively.



Model calibration (Platt scaling)

An approximation of a posterior probability using a @ ClassA @ ClossB
parametric form of a sigmoidal function such that:

1

P(y:1|m)%PA,B(y:1\m):m, (8)

where hg(x) = (W, Z) is a relaxed SVM model.

The parameters are determined by means of minimizing a
binary cross-entropy so that:
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argmin— >  tjlnp+ (1 - 1) In(1 - p;), 9)
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' This is not the QP
where pj = Pag(y =1 | @j), and t; is a target probability problem!

associated with the sample x;: For solving underlying
Nyt 1 unconstrained optimization,
L5 coo = qril - - .
t = Np+2 Y ’ (10) NLS implemented in TAO is

om - y=-L directly used.



Wildfires localization

The 2004 fire season in Alaska and western Canada.

Sources downloaded from nasa.gov and nbcnews.com.



Data processing (ALASKA, 2004)

e Sources were downloaded from Google Earth Engine (multispectral MODIS images and
corresponding labels)

e The time series data was converted into a 7-dimensional time series.

e The dimensions represent the spectral Bands (red, blue, green and NIR and 3x SWIR) collected
from January to December.

e Not observed pixels are removed from data set.

e Additional feature engineering such as standardization or PCA was processed.



Facility for training Models [Summit IBM AC922 system at ORNL]

Summit System totals

e ~ 200 PFlop/s theoretical peak
143 PFlop/s LINPACK—#5 in TOP500

e 4,608 compute nodes

Node configuration
e Compute:
e Two IBM Power9 CPUs, each 22 with cores, 0.5 DP
TFlop/s
e Six NVIDIA Volta V100 GPUs, each with 80 SMs—32
FP64 cores/SM, 7.8 DP TFlop/s

e Memory:

e 512 GB DDR4 memory
e 96 (6 x 16) GB high-bandwidth GPU memory
e 1.6 TB nonvolatile RAM (I/O burst buffer)




Wildfires localization

Posiion: 7064177 -158.65460
MODIS Reflectance (2004-06-09, labels=MTBS)

atoDB, CartoDB attrbutions, Map Data © Googla Earth Engin.

A center of area N65° 44’ 55.259" E149° 53’ 50.859”, area ~ 722,500km?, projection EPSG3338
multispectral images collection MODO09A1, image size 1918 x 1780 x (46 X 7) px
— ~—

space domain time domain




Wildfires localization: data processing pipelines with feature engineering

1e6 Alaska 2004

Background Fire

Highly unbalanced data set 3,317,870 (97.92%) of background pixels and 70,631 (2.08%) of wildfire
pixels. A data set was shuffled and split into training and test data set (ratio 3 : 1). Time series length
1 year (46 time steps).



Wildfire localization: data processing pipelines with feature engineering (a non-sparse model)

Computation using 72-loss failed on model perfomance scores!
Feature selection required!

Tool Transformation #features Sen. | Prec. | F1 | Training time [s]
z-score* (23.23s) | 7 x 46 (322) | 0.03 | 0.97 | 0.08 2.391

P SVM
ermeon PCA™ (83.40s) | 7 x 27 (189) | 0.03 | 0.97 | 0.07 2.33

Table 1: Solver: MPGP, an expansion step is performed using projected CG step, [ = 1 in a proportion
criterion. Penalty C = 0.01 and a loss type is set to #2-loss. rtol = 0.1 Double precision.

e Since feature vectors related to pixels are entirely dense, we use a dense format for
distributed matrices, i.e. MATMPIDENSECUDA in PETSc.

e PCA latent factors were determined by means of a cumulative sum of explainable variances related
to factors at 95% confidence level.

Symbols:
T 6x NVidia Volta V100 ~ *Sequential run on an one CPU core (i7 SB, 32GB RAM DDR3, Debian).



Wildfire localization: data processing pipelines with feature engineering (sparse model)

It works much better employing a feature selection approach!

Tool Transformation #features Sen. | Prec. | F1 | Training time [s]
PermonSVM 079 | 0.80 | 0.80 58.03
_score* (23.2 7 x 46 (322
XGBoost | 25Core (23:235) | 746 (322) = —1aa 0 83 8662.10%
PermonSVM 0.78 | 0.75 | 0.77 20.33"
PCA* (83.4 7x27 (1
XGESoS () x 27 (189) I=ee 1074 [ 0.79 4266.96"

Table 2: Solver: MPGP, an expansion step is performed using projected CG step, [ = 1 in a proportion
criterion. Penalty C = 0.01 and a loss type is set to £1-loss. rtol = 0.1 Double precision.

e Since feature vectors related to pixels are entirely dense, we use a dense format for
distributed matrices, i.e. MATMPIDENSECUDA in PETSc.

e PCA latent factors were determined by means of a cumulative sum of explainable variances related
to factors at 95% confidence level.

Symbols:
T 6x NVidia Volta V100 ~ *Sequential run on an one CPU core (i7 SB, 32GB RAM DDR3, Debian).



Wildfire localization: ALASKA 2004-2005

MODIS (Natural Color, 2004-07-11, labels=MTBS) MODIS (Natural Color, 2005-07-12, labels=MTBS)

A center of area N67° 21’ 54.875" E142° 40’ 6.4459", area ~ 13,450km?, projection EPSG3338
multispectral images collection MODO09A1, image size 231 x 233 x (92 x (7 or 8)) px
—_— —

space domain time domain



Wildfire localization: ALASKA 2004-2005 (data processing)

Alaska 2004 - 2005

40000 -
. 30000 A
£20000 A

10000 4

Data set | #background pixs. | #fire pixs.
Training 29,444 5,585
Test 17,223 717

Background Fire

Unbalanced data set 46,667 (88.10%) of background pixels and 6,302 (11,90%) of wildfire pixels. An
image was split horizontally into training and test data set (ratio 2 : 1). Time series length equals 2

years (92 time points).




Wildfire localization: ALASKA 2004-2005, REFLECTANCE (calibrated SVM model)

Tool Transformation F##features Sen. | Prec. F1
PermonSVM* 7% 92 (644) 0.92 | 0.86 | 0.89
= I
XGBoost #score 091 | 0.82 | 0.86
PermonSVM* 0.86 | 0.88 | 0.87
PCA 7 x 61 (427
XGBoost X 61 (427) =551 081 | 0.86

Table 3: Solver: MPGP, an expansion step is performed using projected CG step, ' = 10 in a proportion
criterion. Penalty C = 0.01 and a loss type is set to £1-loss. rtol = 0.1 Double precision.

e Since feature vectors related to pixels are entirely dense, we use a dense format for
matrices, i.e. MATSEQDENSE in PETSc (A SEQUENTIAL RUN ON A LAPTOP)

e PCA latent factors were determined by means of a cumulative sum of explainable variances related
to factors at 99% confidence level.

Symbols:

*a decision threshold was set to 0.4 T default parameter settings (not run hyper-parameter searching)



Wildfire localization: vegetation in color IR (infra red)

MODIS (Natural Color, 2005-07-12) MODIS (Color Infrared, Vegetation, 2005-07-12)




Wildfire localization: ALASKA 2004-2005, REFLECTANCE+EVI (calibrated SVM model)

Tool Transformation F##features Sen. | Prec. F1

PermonSVM* 0.87 | 0.88 | 0.88
- 8 x 92 (644

XGBoost! #score x 92 (644) 592 082 | 086

PermonSVM* 090 | 0.85 | 0.87
PCA 8 x 61 (488

XGBoost' X 61 (488) =505 079 | 0.84

Table 4: Solver: MPGP, an expansion step is performed using projected CG step, ' = 10 in a proportion
criterion. Penalty C = 0.01 and a loss type is set to £1-loss. rtol = 0.1 Double precision.

e Since feature vectors related to pixels are entirely dense, we use a dense format for
matrices, i.e. MATSEQDENSE in PETSc (A SEQUENTIAL RUN ON A LAPTOP).

e PCA latent factors were determined by means of a cumulative sum of explainable variances related
to factors at 99% confidence level.

Symbols:

*a decision threshold was set to 0.4 T default parameter settings (not run hyper-parameter searching)



Wildfire localization: a posterior probability (calibrated SVM model)

Ground truth (training) Predicted probability (training)

Ground truth (test)




e SVM models obtained using PermonSVM show good performance for wildfire localization with
MODIS data comparable with the Boosted Trees approach (XGBoost).

e Communication efficiency should be improved if we can use a non-buggy implementation of
GPU-aware MPI.

e Focus on solving standard SVM model formulation, i.e. without relaxed bias, and batch
processing.

e Experiments with other feature extraction such as a visual dictionary or feature extraction using
the VGG16/VGG19/RESNET backbone.

e Increasing a model complexity using a hybrid approach, e.g. calibrated SVM could be used as a

last classification layer in the UNet type network.

e Tools for processing MODIS data will be available soon on
https://github.com/natural-hazards/wildfires.


https://github.com/natural-hazards/wildfires

Thank you for your kind attention. Any questions?

Interested? Please visit us on
permon.vsb.cz, github.com/permon
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