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Maximal-margin classifier (SVM)

Let X be a matrix of features associated with

samples and y be a vector of labels:

X =


x11 x12

x21 x22
...

...

xn1 xn2

 , y =


+1

−1
...

+1

 .

We look for a hyperplane

H : ⟨w,x⟩+ b = 0, (1)

such that

⟨w,x⟩+ b ≥ +1 . . . (Class A),

and

⟨w,x⟩+ b ≤ −1 . . . (Class B).
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Maximal-margin classifier (SVM)

Real world data are not linearly separable!

We introduce a miclassification error term (hinge loss

function) for each sample xi such that:

ξi = max{0, 1− yi (⟨w,xi ⟩ − b)}. (2)

This function quantifies error between predicted and

right classification of sample xi as distance between

hyperplane and misclassified sample.
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Relaxed-bias classifier

The standard soft-margin SVM solves a problem of finding a classification model in the form of the

maximal-margin hyperplane; the dual formulation of the primal l1-loss SVM takes a following form:

argmin
α

1

2
αT YTKY︸ ︷︷ ︸

=:H

α−αTe s.t.

 o ≤ α ≤ Ce,

yTα = 0.
(3)

In the case of the relaxed-bias classification, we do not consider bias b in a classification model, but we

include it into the problem by means of augmenting the vector w and each sample sample xi with an

additional dimension so that:

ŵ ←

[
ŵ

B

]
, x̂i ←

[
xi
γ

]
, (4)

where b ∈ R, and γ ∈ R+ is a user defined variable, which is typically set to 1. In a fact, we consider

the bias B as a user-defined parameter (similar to the Deep Neural Networks).



Relaxed-bias classifier

Let p ∈ {1, 2} for purposes related to our application, then the problem of finding hyperplane

Ĥ = ⟨ŵ, x̂⟩ can be formulated as a constrained optimization problem in the following primal

formulation:

argmin
ŵ, ξi

1

2
⟨ŵ, ŵ⟩ +

C

p

n∑
i=1

ξ̂pi s.t.

 yi ⟨ŵ, x̂i ⟩ ≥ 1− ξ̂i ,

ξ̂i ≥ 0 if p = 1, i ∈ {1, 2, . . . , n}.
(5)

For both p = 1 and p = 2, we can dualize the primal formulation (5) using the Lagrange duality so

that:

argmin
α

1

2
αTHα−αTe s.t. o ≤ α ≤ Ce, (6)

argmin
α

1

2
αT

(
H + C−1I

)
α−αTe s.t. o ≤ α, (7)

respectively.



Model calibration (Platt scaling)

An approximation of a posterior probability using a

parametric form of a sigmoidal function such that:

P (y = 1 | x) ≈ PA,B (y = 1 | x) = 1

1 + eAhθ(x) + B
, (8)

where hθ(x) = ⟨ŵ, x̂⟩ is a relaxed SVM model.

The parameters are determined by means of minimizing a

binary cross-entropy so that:

argmin
A,B

−
l∑

j=1

tj ln pj + (1− tj) ln(1− pj) , (9)

where pj = PA,B (y = 1 | xj), and tj is a target probability

associated with the sample xj :

tj =


Np+1

Np+2
. . . y = +1,

1
Nn+2

. . . y = −1.
(10)

Class A Class B

This is not the QP
problem!
For solving underlying

unconstrained optimization,

NLS implemented in TAO is

directly used.



Wildfires localization

The 2004 fire season in Alaska and western Canada.

Sources downloaded from nasa.gov and nbcnews.com.



Data processing (ALASKA, 2004)

• Sources were downloaded from Google Earth Engine (multispectral MODIS images and

corresponding labels)

• The time series data was converted into a 7-dimensional time series.

• The dimensions represent the spectral Bands (red, blue, green and NIR and 3× SWIR) collected

from January to December.

• Not observed pixels are removed from data set.

• Additional feature engineering such as standardization or PCA was processed.



Facility for training Models [Summit IBM AC922 system at ORNL]

Summit System totals

• ∼ 200 PFlop/s theoretical peak

143 PFlop/s LINPACK—#5 in TOP500

• 4,608 compute nodes

Node configuration

• Compute:

• Two IBM Power9 CPUs, each 22 with cores, 0.5 DP

TFlop/s

• Six NVIDIA Volta V100 GPUs, each with 80 SMs–32

FP64 cores/SM, 7.8 DP TFlop/s

• Memory:

• 512 GB DDR4 memory

• 96 (6× 16) GB high-bandwidth GPU memory

• 1.6 TB nonvolatile RAM (I/O burst buffer)



Wildfires localization

A center of area N65◦ 44′ 55.259” E149◦ 53′ 50.859”, area ≈ 722, 500km2, projection EPSG3338

multispectral images collection MOD09A1, image size 1918× 1780︸ ︷︷ ︸
space domain

× (46× 7)︸ ︷︷ ︸
time domain

px



Wildfires localization: data processing pipelines with feature engineering

Highly unbalanced data set 3, 317, 870 (97.92%) of background pixels and 70, 631 (2.08%) of wildfire

pixels. A data set was shuffled and split into training and test data set (ratio 3 : 1). Time series length

1 year (46 time steps).



Wildfire localization: data processing pipelines with feature engineering (a non-sparse model)

Computation using l2-loss failed on model perfomance scores!

Feature selection required!

Tool Transformation #features Sen. Prec. F1 Training time [s]

PermonSVM
z-score⋆ (23.23s) 7× 46 (322) 0.03 0.97 0.08 2.39†

PCA∗ (83.40s) 7× 27 (189) 0.03 0.97 0.07 2.33†

Table 1: Solver: MPGP, an expansion step is performed using projected CG step, Γ = 1 in a proportion

criterion. Penalty C = 0.01 and a loss type is set to l2-loss. rtol = 0.1 Double precision.

• Since feature vectors related to pixels are entirely dense, we use a dense format for

distributed matrices, i.e. MATMPIDENSECUDA in PETSc.

• PCA latent factors were determined by means of a cumulative sum of explainable variances related

to factors at 95% confidence level.

Symbols:
† 6x NVidia Volta V100 ⋆Sequential run on an one CPU core (i7 SB, 32GB RAM DDR3, Debian).



Wildfire localization: data processing pipelines with feature engineering (sparse model)

It works much better employing a feature selection approach!

Tool Transformation #features Sen. Prec. F1 Training time [s]

PermonSVM
z-score⋆ (23.23s) 7× 46 (322)

0.79 0.80 0.80 58.03†

XGBoost 0.83 0.83 0.83 8662.10⋆

PermonSVM
PCA⋆ (83.40s) 7× 27 (189)

0.78 0.75 0.77 20.33†

XGBoost 0.85 0.74 0.79 4266.96⋆

Table 2: Solver: MPGP, an expansion step is performed using projected CG step, Γ = 1 in a proportion

criterion. Penalty C = 0.01 and a loss type is set to l1-loss. rtol = 0.1 Double precision.

• Since feature vectors related to pixels are entirely dense, we use a dense format for

distributed matrices, i.e. MATMPIDENSECUDA in PETSc.

• PCA latent factors were determined by means of a cumulative sum of explainable variances related

to factors at 95% confidence level.

Symbols:
† 6x NVidia Volta V100 ⋆Sequential run on an one CPU core (i7 SB, 32GB RAM DDR3, Debian).



Wildfire localization: ALASKA 2004–2005

A center of area N67◦ 21′ 54.875” E142◦ 40′ 6.4459”, area ≈ 13, 450km2, projection EPSG3338

multispectral images collection MOD09A1, image size 231× 233︸ ︷︷ ︸
space domain

× (92× (7 or 8))︸ ︷︷ ︸
time domain

px



Wildfire localization: ALASKA 2004–2005 (data processing)

Data set #background pixs. #fire pixs.

Training 29, 444 5, 585

Test 17, 223 717

Unbalanced data set 46, 667 (88.10%) of background pixels and 6, 302 (11, 90%) of wildfire pixels. An

image was split horizontally into training and test data set (ratio 2 : 1). Time series length equals 2

years (92 time points).



Wildfire localization: ALASKA 2004–2005, REFLECTANCE (calibrated SVM model)

Tool Transformation #features Sen. Prec. F1

PermonSVM⋆

z-score 7× 92 (644)
0.92 0.86 0.89

XGBoost 0.91 0.82 0.86

PermonSVM⋆

PCA 7× 61 (427)
0.86 0.88 0.87

XGBoost 0.91 0.81 0.86

Table 3: Solver: MPGP, an expansion step is performed using projected CG step, Γ = 10 in a proportion

criterion. Penalty C = 0.01 and a loss type is set to l1-loss. rtol = 0.1 Double precision.

• Since feature vectors related to pixels are entirely dense, we use a dense format for

matrices, i.e. MATSEQDENSE in PETSc (A SEQUENTIAL RUN ON A LAPTOP)

• PCA latent factors were determined by means of a cumulative sum of explainable variances related

to factors at 99% confidence level.

Symbols:
⋆a decision threshold was set to 0.4 † default parameter settings (not run hyper-parameter searching)



Wildfire localization: vegetation in color IR (infra red)



Wildfire localization: ALASKA 2004–2005, REFLECTANCE+EVI (calibrated SVM model)

Tool Transformation #features Sen. Prec. F1

PermonSVM⋆

z-score 8× 92 (644)
0.87 0.88 0.88

XGBoost† 0.92 0.82 0.86

PermonSVM⋆

PCA 8× 61 (488)
0.90 0.85 0.87

XGBoost† 0.92 0.79 0.84

Table 4: Solver: MPGP, an expansion step is performed using projected CG step, Γ = 10 in a proportion

criterion. Penalty C = 0.01 and a loss type is set to l1-loss. rtol = 0.1 Double precision.

• Since feature vectors related to pixels are entirely dense, we use a dense format for

matrices, i.e. MATSEQDENSE in PETSc (A SEQUENTIAL RUN ON A LAPTOP).

• PCA latent factors were determined by means of a cumulative sum of explainable variances related

to factors at 99% confidence level.

Symbols:
⋆a decision threshold was set to 0.4 † default parameter settings (not run hyper-parameter searching)



Wildfire localization: a posterior probability (calibrated SVM model)



Summary

• SVM models obtained using PermonSVM show good performance for wildfire localization with

MODIS data comparable with the Boosted Trees approach (XGBoost).

• Communication efficiency should be improved if we can use a non-buggy implementation of

GPU-aware MPI.

• Focus on solving standard SVM model formulation, i.e. without relaxed bias, and batch

processing.

• Experiments with other feature extraction such as a visual dictionary or feature extraction using

the VGG16/VGG19/RESNET backbone.

• Increasing a model complexity using a hybrid approach, e.g. calibrated SVM could be used as a

last classification layer in the UNet type network.

• Tools for processing MODIS data will be available soon on

https://github.com/natural-hazards/wildfires.

https://github.com/natural-hazards/wildfires


Thank you for your kind attention. Any questions?

Interested? Please visit us on

permon.vsb.cz, github.com/permon
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