SAND2021-11197PE|

EERs Sandia

\ W
(— [L i\) Exceptional service in the national interest National
= | Laboratories

ﬁt: = 'fﬂ,al l‘glJ:E':fﬂ
by

I?‘(I]'; fx,0)dx =M (

Kokkos Ecosystem runtime, math Ilbrary, tools

Unclassified Unlimited Release Luc Berger-Vergiat, - Center for Computing Research

Sandia National Laboratories/NM

W DEFANTUSINT OF -) P Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
4 ENERGY YA s Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

SandialNational Laboratories islalmultimissionllaboratoryimanagediand operatedlb National Technoloqu&IEnqmeenanSqutlonsloﬂSand|a ILLC Jalwhollylowned

~ Cost of Porting Code)

10 LOC / hour ~ 20k LOC / year

= Optimistic estimate: 10% of an application is modified to adopt an on-node
Parallel Programming Model

= Typical Apps: 300k — 600k Lines

= 500k x 10% => Typical App Port 2.5 Man-Years
= lLarge Scientific Libraries

= E3SM: 1,000k Lines x 10% => 5 Man-Years

= Trilinos: 4,000k Lines x 10% => 20 Man-Years

—
S

~ Applications Libraries Frameworks

UT Uintah
Combustine

SNL LAMMPS
Molecular Dynamics

NREL ExaWind

Wind Turbine CFD ORNL Raptor

Large Eddy Sim

Kokkos

™ (&‘J‘]" rsn

e o

ORNL Frontier L
Cray / AMD GPU hat
y LANL/SNL Trinity ANL Aurora21 SNL Astra LLNL SIERRA

invel Haswell /Intel 61 Xeon CPUS + Intel Xe GPUs ~ ARM Architecture 1B\ Powerg / NVIDIA Volta

~ What is Kokkos?) B

Laboratories

= A C++ Programming Model for Performance Portability
" |mplemented as a template library on top of CUDA, OpenMP, HPX, ...
= Aims to be descriptive not prescriptive
= Aligns with developments in the C++ standard
= Expanding solution for common needs of modern science/engineering codes
= Math libraries based on Kokkos
= Tools which enable insight into Kokkos
= |tis Open Source
= Maintained and developed at https://github.com/kokkos
= |t has many users at wide range of institutions.

—
S

https://github.com/kokkos

~ Kokko

4

Kokkos
Tools

s EcoSystem

Science and Engineering Applications

Trilinos

9

i)
Kokkos Remote Spaces

L

Kokkos Interop

==

Kokkos Res‘ilience J

= Transitioning To Community Project rh) je,

. : Sandi
Kokkos Core: 15 Developers (8 SNL) Na?iuﬁal O AK RIDGE
= More code contributions from non-SNL laboratories - National Laboratory

= >50% of commits from non-Sandians
= Sandia leads API design Argonne & :LosAlamos

NATIONAL LABORATORY NATIONAL LABORATORY
EST.1943

BERKELEY LAB

Kokkos Core: C.R. Trott, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Jan Ciesko, J. Wilke, L. Cannada,
H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Madsen, D. Arndt, J. Madsen, R. Gayatri
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova, D. Sunderland,

= Other labs lead backend implementations

= QOther subprojects largely by Sandia so far

Kokkos Kernels: S. Rajamanickam, L. Berger, V. Dang, N. Ellingwood, E. Harvey, B. Kelley, K. Kim, C.R. Trott, J. Wilke, S. Acer
Kokkos Tools: D. Poliakoff, S. Hammond, C.R. Trott, D. Ibanez, S. Moore, L. Cannada
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

= Kokkos Uptake rh) je,

ECP Critical Dependencies Kokkos Slack Users
MPI 60 |hypre 11] * 525registered users .,
LLVM 57| [DAV-SDK 11 * 90 Institutions
C++t 411 VTK-m 11 * Every continent 300
OpenMP 34| |[Trilinos 10 . (-Antarctica)200
LAPACK 241 |ADIOS gl * Doubles every year
CUDA 22 SPACK 8
100
Fortran 21/ |SCALAPACK | 8
HDF5 21 FFT 7 0
BLAS 21 |openACC 7 DOE 17 18 19 20 21
Kokkos 18 |MPI-IO 6 (not .
C 12 ProtCDE 5 SNL) ¢ Total membership
® \Weekl ti
ALPINE 12 Tau 5 eekly active members

~ Kokkos Core Abstractions)
Parallel Execution

Vlemory Spaces (“Where Execution Spaces (“Where”)

- HBM, DDR, Non-Volatile, Scratch - CPU, GPU, Executor Mechanism
- Row/Column-Major, Tiled, Strided - parallel_for/reduce/scan, task-spawn

- Streaming, Atomic, Restrict - Range, Team, Task-Graph
#

” Kokkos Core Capabilities = i,

Laboratories

oot e

Parallel Loops

Parallel Reduction

Tightly Nested
Loops

Non-Tightly Nested
Loops

Task Dag

Data Allocation
Data Transfer
Atomics

Exec Spaces

parallel_for(N, KOKKOS_LAMBDA (inti){...BODY... });

parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd += ...

}, Sum<>(result));

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
KOKKOS_LAMBDA (int i, intj, int k) {...BODY...});

parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
... COMMON CODE 1 ...
parallel_for(TeamThreadRange(team, M(N)), [&] (int]) { ... INNER BODY... });
... COMMON CODE 2 ...

b;

task_spawn(TaskTeam(scheduler , priority), KOKKOS_LAMBDA (Team team) { ... BODY });
View<double**, Layout, MemSpace> a(“A”,N,M);

deep_copy(a,b);

atomic_add(&ali],5.0); View<double*, MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;

Serial, Threads, OpenMP, Cuda, HPX (experimental), HIP (experimental), OpenMPTarget (experimentag

~ More Kokkos Capabilities

MemoryPool

LayoutRight StaticWorkGraph

m kokkos_malloc cokkos free

UniqueToken ScratchSpace ProfilingHooks

~ Example: Conjugent Gradient Solver)

= Simple Iterative Linear Solver
= For example used in MiniFE
= Uses only three math operations:
= Vector addition (AXPBY)
= Dot product (DOT)
= Sparse Matrix Vector multiply (SPMV)
= Data management with Kokkos Views:

View<double*,HostSpace,MemoryTraits<Unmanaged> > h_x(x_in, nrows);
View<double*> x("x",nrows);
deep_copy(x,h_x);

ﬁ
S

” CG Solve: The AXPBY) B2,

= Simple data parallel loop: Kokkos::parallel for

= Easy to express in most programming models
= Bandwidth bound
= Serial Implementation:

void axpby(int n, double* z, double alpha, const double* x,
double beta, const double* y){
for(int i=0; i<n; i++)
z[i] = alpha*x[i] + beta*y[il;

String Label: Profiling/Debugging]
Execution Policy: do n iterations]
Loop Body]

Iteration handle: integer index J

[Parallel Pattern: for loop]
= —
= Kokkos Implementation:

Y Y

void axpby(int n, View<double*> z, double alpha, View<canst doublq*> X,

View<const double*> y) {
arallel_for("AXpBY", n, KOKKOS_ (8N st ifit i) {)
i) = alpha*x(i) + beta*y(i);

N;

}

~ CG Solve: The Dot Product rh) jee,

= Simple data parallel loop with reduction: Kokkos::parallel_reduce

= Non trivial in CUDA due to lack of built-in reduction support
= Bandwidth bound
= Serial Implementation:

double dot(int n, const double* x, const double* y) {
double sum = 0.0;

for(int i=0; i<n; i _ :

oerrr; L: XEEPy[;;+) { Parallel Pattern: loop with reduction]

return sum;
} [Iteration Index + Thread-Local Red. Variable J

—==

= Kokkos Implementation:

double dot(int n, View<const double*> x, View<const double*> y) {

double x_dot y = 0.0; 4 -

barallel_reduce("Dot"jn, KOKKOS_LAMBDA (const intli.double& sum) {)
sum += X[i]"y[i];

}, x_dot_y);

return x_dot_y;

#
S

~ CG Solve: Sparse Matrix Vector Multiply @),

= Loop over rows
= Dot product of matrix row with a vector
= Example of Non-Tightly nested loops

= Random access on the vector (Texture fetch on GPUs)
{ Outer loop over matrix rows]

void SPMV(int nrows, canstint* A_row_offsets, const int* A_cols,
const double* AfWals. double* y, const double* x) {
for(int row=0; row<nrows; ++row) {
double sum = 0.0;

int row_start=A_row_offsets[row]; { Inner dot product row x vector]

y[row] = sum;

” CG Solve: Sparse Matrix Vector Multiply

void SPMV(int nrows, View<const int*> A_row_offsets,
View<const int*> A_cols, View<const double*> A_vals,
View<double*> y
View{const double*, MemoryTraits< RandomAccess>> x) {]

/I Performance heuristic to figure out how many rows to give to a team
int rows_per_team = get_row_chunking(A_row_offsets);

arallel_for("SPMV:Hierarchy", TeamPolicy< Schedule< Static > >
((nrows+rows_per_team-1)/rows_per_team,AUTO,8),
KOKKOS_LAMBDA (const TeamPolicy<>:‘member_type& team) {

const int first_row = team.league_rank()*rows_per_team;
const int last_row = first_row+rows_per_team<nrows? first_row+rows_per_team : nrows;

pa{rallel_for(TeamThreadRange(team,ﬁrst_row,last_row),[&] (corw
COTSCINT FOW_Start=A_row_OTSets[row];
const int row_length=A_row_offsets[row+1]-row_start;

double y_row;

Sandia
National
laboratories
) [Enable Texture Fetch on x]
[Row x Vector dot product

—

parallel_reduce(ThreadVectorRange(team,row. length),[&] (const int i, double& sum) {
sum += A_vals(i+row_start)*x(A_cols(i+row_start));

} \

}, Y _row):
y(row) =y_row;
3

1; .
} [Distribute rows in workset over team-threads J [

Team Parallelism over Row Worksets

_CG Solve: Performance)

= Comparison with other i NVIDIA 100 / 1BV Power
Programming Models £

= Straight forward “
implementation of kernels 2o II

[] O pe n M P 4 . 5 is i m m atu re at AXPBY-100 AXPBY-QOOZEHACC D-o;lDU: -Kokm[;otzssenmp SPMV-100 SPMV200
this point

Intel KNL 7250

= Two problem sizes:
100x100x100 and

200x200x200 elements l |i ill I
| . ||l|| I I)

AXPBY-100 AXPBY-200 DOT100 DOT-200 SPMV-100 SPMV-200

[Gflop/s]
5

armance
(=] w
= =

Perf

=
=1

B OpenACC mKokkos ®OpenMP TBE (Flat) ® TEB (Hierarchical)

AMD Support Status S () i,

Frontier/El Capitan: HIP and OpenMP 5

Primary development of HIP at ORNL

Most Capabilities ready

PR testing for Kokkos on AMD GPUs in place
ArborX, Cabana, LAMMPS working with HIP
Trilinos linear solvers are read .
Mesh and discretization next (support ExaWind/EMPIRE) ~ HACC ArborX Component Testing

B Construction [l Query+Cluster [PostProcess
2.0

Vector Add
@ w100 @ A0
800
1.5

0

1.0

400

Time in s

0.5
2on
0.0
o V100 MIs0

1000 10000 100000 1000003 10000000

Effective Bandwidth n GR/s

We are largely using our own machines, with the public software stack from Intel and AMD.

Kokkos 3.3 (Dec 2020):

- HIP is largely feature complete

Kokkos 3.4 (Feb/March 2021):

- OpenMP Target largely feature complete

17

Kokkos Core functionality porting to Frontier nearly complete

Aurora Support Status) Retooa

Laboratories

Programming Models: DPC++/SYCL + OpenMP 5

* Primary work for DPC++ at ANL and ORNL
. | * Shifted ORNL team members from HIP to DPC++ since
= HIP is in much better shape

MWLALNOL e

* DPC++/SYCL was long blocked by compiler issues
* Worked with Intel to get those fixed
* Now primary capabilities are merged to develop branch

* PR testing DPC++/SYCL in place
* Intel DPC++/SYCL testing is done on NVIDIA GPUs ...
* Leverages clang capability to target different backend

We are largely using our own machines (not ECP EAS), with the public software stack from Intel and AMD.

Kokkos 3.3 (Dec 2020):

- OpenMP Target and DPC++ have most primary capabilities working
Kokkos 3.4 (Feb/March 2021):

- OpenMPTarget and DPC++/SYCL are largely feature complete

Initial Kokkos Core functionality porting to Aurora done. 1

~ Kokkos Support

= The Kokkos Lectures

= 8 lectures covering most
aspects of Kokkos

= 15 hours of recordings
= >500slides
= >20 exercises
= Extensive Wiki
= API| Reference
" Programming Guide
= Slack as primary direct support

Laboratories

https://kokkos.link/the-lectures

* Module 1: Introduction
* Introduction, Basic Parallelism, Build System
* Module 2: Views and Spaces
* Execution and Memory Spaces, Data Layout
* Module 3: Data Structures and MDRangePolicy
* Tightly Nested Loops, Subviews, ScatterView,...
* Module 4: Hierarchical Parallelism
* Nested Parallelism, Scratch Pads, Unique Token
* Module 5: Advanced Optimizations
+ Streams, Tasking and SIMD
* Module 6: Language Interoperability
* Fortran, Python, MPIl and PGAS
* Module 7: Tools
* Profiling, Tuning , Debugging, Static Analysis
Module 8: Kokkos Kernels
* Dense LA, Sparse LA, Solvers, Graph Kernels

#
S

https://kokkos.link/the-lectures

Fa

Kokkos Kernels r) s

= BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction
= Scalar type agnostic, e.g. works for any types with math operators
= Layout and Memory Space aware

= Can call vendor libraries when available/beneficial

= Views contain size and stride information => Interface is simpler

/I BLAS /I Kokkos Kernels
int M,N,K,LDA,LDB; double alpha, beta; double *A, *B, *C; double alpha, beta; View<double**> A,B,C;
dgemm('N','N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC); gemm('N','N',alpha,A,B,beta,C);

= Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)

parallel_for("NestedBLAS", TeamPolicy<>(N,AUTO), KOKKOS_LAMBDA (const team_handle_t& team_handle) {
/I Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
/I Call BLAS using parallelism in this team (e.g. CUDA block)
gemv(team_handle,'N',alpha,A,x,beta,y)

b;

#
S

_Example: CG Kokkos Kernels version

= Using Kokkos Kernels sparse and dense linear algebra simplifies CG
implementation greatly

double toletance = 0.0; int iteration = 0;
while (tolerance < norm_res && iteration < 100) {
std::cout << "Running CG iteration " << iteration
<<" current resnorm =" << porm_res << \n';
[*Ap=A*p * KokkosSparse::spmv("N", 1, crsMat, pAll, 0, Ap);
Space().fence();

/* pAp_dot = dot(Ap , p) */ const double pAp_dot = KokkosBlas::dot(p, Ap) ;
double alpha = old_rdot / pAp_dot ;

/*x += alpha * p; */ KokkosBlas::axpby(alpha, p, 1.0, x_vector);

/* r+=-alpha * Ap ; */ KokkosBlas::axpby(-alpha, Ap, 1.0, r);

const double r_dot = KokkosBlas::dot(r, r);
const double beta =r_dot/old_rdot;
[*p=r+beta”p;* KokkosBlas:axpby(1.0, r, beta, p);

norm_res = sqrt(old_rdot = r_dot);
std::cout << "\tnorm_res:" << norm_res << " old_rdot:" << old_rdot<< std::endl;
++iteration ;

#
S

_Kokkos Kernels SpMV performance) e

* SpMV native implementation is specialized for:
 Serial runs ———
* OpenMP runs t2f Em vendo:
« GPU runs
« Single vs. Multiple vectors

« Allows users to select following vendor TPLs
« cuSPARSE
« MKL
« ArmPL in test only
* rocSparse (PR in progress)

11 SpMY poerformance comparisoan
T T T

Tiree: [4]

Shvlake: AG4TX V0o AT D0

Arch lerlma

* Figure to the right shows native vs TPL implementation
performance on various CPU and GPU architectures

#

~ Kokkos Tools)
= Profiling

= New tools are coming out

= Worked with NVIDIA to get naming info into their system
= Auto Tuning (Under Development)

= Internal variables such as CUDA block sizes etc.

= User provided variables

= Same as profiling: will use dlopen to load external tools
= Debugging (Under Development)

= Extensions to enable clang debugger to use Kokkos naming information
= Static Analysis (Under Development)

= Discover Kokkos anti patterns via clang-tidy

#
S

" Kokkos-Tools Profiling & Debugging)

= Performance tuning requires insight, but tools are different on each platform
= KokkosTools: Provide common set of basic tools + hooks for 3rd party tools
= Common issue: abstraction layers obfuscate profiler output

= Kokkos hooks for passing names on

= Provide Kernel, Allocation and Region |l it

@ snatysic Target Analysis Type B Collection Log TOINEal & Eottom-up
= NO need to recom plle Grouping: | Frame Domain / Frame J Function [Call Stack - -
. ' CPU Tii
= Uses runtime hooks Srame Bomaini e neen 1IN | I i .
. . |@idie W Poor Ok Wideal] Over Imbals
= Set via env variable *?:aralieanr.ﬂ.xFH arees [l o
1 1.615% . - 0.17
L 15935 0.18
b2 1.560: [T 0.21
P[No frame domain - Outside any framea] I:I.ﬂ?EI-sl 1.34
b ParalielReduce Dot 1.052< [T 0.53
b ParaiielFor.ZamainELIRKIE 2.168s 0.17

#
S

- Kokkos Tools Integration with 3" Party (@),

= Profiling Hooks can be subscribed to by tools, and currently have support for TAU,
Caliper, Timemory, NVVP, Vtune, PAPI, and SystemTAP, with planned CrayPat support

= HPCToolkit also has special functionality for models like Kokkos, operating outside of
this callback system

TAU Example:

ININAEREE AT L T T T T T T [T LI T T T SR RN NN AETIR NN ETRR AN
Mame Exclusive TIME Inclusive TIME Calls Child Calls
= B.TAU application 0.143 96.743 1 B32
= BComm: exchange 0.001 0.987] 142
= BComm: excha halo 0.001 4.702 -] 184
" 0.00:4 31.347 a5 1,330
B Eokkos:parallel_for CommMPi:halo_update_pack [device=0] 0002 0.506 190 190
B Eokkos:paraliel_for CommMPi:halo_update_self [device={0] 0.003 0597 180 380
W Eokkos: parallel_for CommMPi=halo_update_unpack [device=0] 0.002 0n.97 180 190
WMP_Irecvi) 0.001 0.001 190 0
EMPI_Send{} 259.204 29.268 190 L]
W MPI_Wair() 0.001 0.0a1 130]
B OpenMP_mplicit_Task 0.041 1.9E5 7a0 760
BOpenMP_Parallel_Region parallel_for<Kokkos: RangePolicy<CommBPi: Ta 0 0.504 190 190
BOpenMP_Paraltel_Reglon parallel_for<Kokkos: RangePolicy < CommP:Ta .08 0.968 190 190
BOpenMP_Parallel_Region vold Kok kas:parallel_for < Kakkos: RangePalicy-<i 0.001 0.504 180 380
BWOpenMP_Syne_Region_Barrier parallel_for <éokkos: RangePolicy < Commbil 0459 0.489 190 L]
B OpenMP_Sync_Reglon_Barrier parallel_for <Kokkos!:RangePolicy <Cammbdi 0.875 0.875 190 L]

WOpenMP_Sync_Reglon_Barrier vaid Kokkos:paraliel_lor<Kokkos RangePol .58 0.58 iao L]

#
S

~ Kokkos Tools Static Analysis)

-

clang-tidy passes for Kokkos semantics
Under active development, requests welcome
IDE integration

Kokkos ::parallel_for(
TPolicy, KOKKOS_LAMBDA(TeamMember

int a = &;

Kokkos :: parallel_for(TTR(t, 1), [&1(int 1) { Lambda capture modifies reference capture variable 'a' that 1is

a +=

Kokkas :: parallel _for(
TPolicy, KOKKOS_ LAMBDA(TeamMember consth t) {
int b -

auto lambda = [&](int 1) { Lambda capture modifies reference capture variable

b += 1;
cvl) += 1;
bi
Kokkos :: parallel_for{TTR(t, 1), lambda);
I].
Iy

"?' LAM MPS Questions: Stan Moore 1) o

Laboratories

Widely used Molecular Dynamics Architecture Comparison

Simulations package Example in.reaxc.tatb /
= Focused on Material Physics 196k atoms / 100 steps
= QOver 500 physics modules 200
= Kokkos covers growing subset of those 0
= REAX s an important but very complex £100
potential - i . I
= USER-REAXC (Vanilla) more than 0 I I
10,000 LOC \\2@$ O&@ q)/\.\ilz v{_@ Q,\QQ A,\QQ
= Kokkos version ~6,000 LOC & N © Y
ce:;\~ +® +?~ __é @ @
= LJin comparison: 200LOC R S

. . BVanila m
%

~ Sparta: Production Simulation at Scale

= Stochastic PArallel Rarefied-gas Time-
accurate Analyzer

= A direct simulation Monte Carlo code

= Developers: Steve Plimpton, Stan Moore,
Michael Gallis

= Only code to have run on all of Trinity

= 3 Trillion particle simulation using both
HSW and KNL partition in a single MPI
run (~20k nodes, ~1M cores)

= Benchmarked on 16k GPUs on Sierra
= Production runs now at 5k GPUs
= Co-Designed Kokkos::ScatterView

Sandia
1| atonal
Laboratories
SPARTA Weak Scaling

500
— 450 g— il —
&400
S350
<300
(0]
5250
§2oo A e —
% 150 gy —— —9
[0]
o

4 8 16 32 64 128 256

== Haswell =hr=KNL ==l=\/100

#

~ Uintah) S

Laboratories

= System wide many task framework from Reverse Monte Carlo
University of Utah led by Martin Berzins Ray Tracing 643 cells

= Multiple applications for combustion/radiation 16

simulation w14

, 212

= Structured AMR Mesh calculations %10

= Prior code existed for CPUs and GPUs S s

= Kokkos unifies implementation :’? i
" |mproved performance due to constraints in E 5 I I

Kokkos which encourage better coding practices 0
CPU GPU KNL

. B Original ®Kokkos
Questions: Dan Sunderland

#
S

_ Kokkos - C++ Standard integration cycle

Port accepted features
to legacy versions

Kokkos Legaoy C++ Standard

Implemented legacy
capabilities in terms of
new C++ features

m

Propose new features
for C++ Standard

Back port to current compilers
C++ Backport P P

_ C++ Features in the Works) B

= First success: atomic_ref<T> in C++20
= Provides atomics with all capabilities of atomics in Kokkos
= atomic_ref(a[i])+=5.0; instead of atomic_add(&aJi],5.0);
= Next thing: Kokkos::View => std::mdspan
= Provides customization points which allow all things we can do with
Kokkos::View
= Better design of internals though! => Easier to write custom layouts.

= Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks
= We hope will land early in the cycle for C++23 (i.e. early in 2020)
= Production reference implementation: https://github.com/kokkos/mdspan

= Also C++23: Executors and Basic Linear Algebra: https://github.com/kokkos/stdblas

ﬁ
S

https://github.com/kokkos/mdspan
https://github.com/kokkos/stdblas

Sandia
@ National
Laboratories

= Tracking New Capabilities: Graphs .

Build static graphs of kernels

= Can use CUDAGraphs as
backend

= Allows repeated dispatch
Helps with Latency Limited codes
= Cuts down on launch latency

= Can leverage streams to overlap
work

= |nfers overlapping from
dependencies

Prototype release part of Kokkos 3.3

const auto graph = Kokkos::Experimental::create_graph(

[=]1(auto root) {
auto f1 = root.then_parallel_ for(

Kokkos: :RangePolicy<>(®, 1), KOKKOS LAMBDA(long) {..});
auto f2a = fl.then_parallel_ for(

Kokkos: :RangePolicy<>(0®, 1), KOKKOS LAMBDA(long) {..});
auto f2b = fl.then_parallel_ for(

Kokkos: :RangePolicy<>(®, 1), KOKKOS LAMBDA(long) {..});
when_all(f2a, f2b).then_parallel_reduce(

Kokkos: :RangePolicy<>(0®, 1), KOKKOS LAMBDA(long) {..}

result);

1)

while(result()>threshold {
graph.submit();
graph.get_execution_space().fence();

}

” Benchmark the Example)

Solid: Graphs
Dashed: Simple Dispatch

Laboratories

Can reuse graph:

- In solver iterations

- Between solves if matrix
structure unchanged

>100 reuses could be realistic

(@)
o

(&)
o

N
o

Throughput Improvement:
- 50K 78%
- 200k 49%
- 1M 15%

Time per kernel in us
N w
o o

-
o

o

1 4 16 64 128 256 512
Repetitions

Next: look at reducing

—@—50k-Graph =0=50k —@—200k-Graph . .
P P graph creation time

=[3=200k =& 1M-Graph -tx=1M

OpenMPTarget Status OpenMP Vector Add) Retooa
struct Foo { Laboratories

* Most capabilities are now working ntN;
* Until earlier in 2020 limited by compiler bugs oy
* Using primarily main line Clang/IIvm /I Need temporaries here for 4x performance gain
* Are also working with Intel and NVIDIA i;t “:)TiN:_ .
* Started Working with AMD and HPE #Slrjag?nai(zr;:,ta?/ge;tﬁ’arﬁz aigt’ribute parallel for \
* Next phase: concentrating on performance simd is_ r(xp.yp,zp) data map(to: N_)
* C++ performance very fragile fortint 1=0; 1SN i) {
* We are ramping up collaboration with compiler }zp['] = *Pl+ ypll:
engineers }
3
Vector Add Performance lllustration g@?gl\?’/\e(rggrﬁ z
* Simple problem, should clearly be bandwidth limited kokkos Vector
* Using clang/llvm 11, CUDA 10.1, NVIDIA V100 -Addoo 600
* Kokkos/CUDA (kk-c), Kokkos/OMPT (kk-0), Native View<double*> x,y,z; 400
H H H _ int N;
OMPT (omp), Native OMPT with temporaries (omp-t) e a,’fplb¥() (- 200 I I
DAXPBY Bandwidth GB/s ROKKOS, LAMBOAL) { 0
- = 00,000 z(i) = x(i) + y(i); NN
ST }}); B kk-0 lomp -t
som }: G e B,

Y

0 200 400 600 800 Takeawaz: Performance is still very fragile!

A more comprehensive Frontend/Compiler comparison) et

* Comparing simple vector add and dot product
— Also implemented straight forward native implementation
— No hoops jumped through to optimize
— 1M length, not huge, but also not trivial, i.e. latency impact expected but not dominant?
* If purely bandwidth bound this would be 24us for axpby@1TB/s and 16us for dot
— clxx denotes clang/llvm version

Vector ADD N = 1M Dot Product N = 1M
W cio W cd11 W headidpc++ W ciio W ci1 B headidpo++

800 500

0 w

C: @

6 600 B 400

= c

§ £ 300
400 =

=

= ,% 200

m o

2 2 £ 100

o 8

5, 2

o

kk-cuda kk-omp omp amp-t kk-sycl sycl kk-cuda Kk-omp omp omp-t kk-sycl syl

Sake: Kokkos Kernels

» What parts of your code are you porting to the accelerator, and what fraction of overall
performance does this code account for in a realistic problem?

— All of Kokkos Kernels is ported to accelerators, linear solvers can account for a large portion (up to 50%)
of the overall performance of an application

» What accelerator programming environments were used? What is the long-term performance
portability plan for exascale machines with different types of GPUs?

— Kokkos Kernels relies on the Kokkos library to provide basic data structure and parallel execution
policies. Currently all GPU architectures are supported through backends of Kokkos (Cuda, HIP, SYCL
and OpenMP Target) and our algorithms are further tuned internally for performance.

Currently the library is built and tested daily on Power9+V100 with the Kokkos Cuda backend and on
Rome+MI100 with the Kokkos HIP backend. Work is ongoing to support daily testing of the OpenMP
Target backend on both previously mentioned systems. Development is ongoing on JLSE systems with
Kokkos SYCL backend.

Sake: Kokkos Kernels

» What single node speedup (if any) was achieved relative to the best performance on other
classes of systems?
SpMV performance comparison

— Shown on the right is the performance of our native SpMV 14 — | |

|
B native
1 vendor

implementation against vendor TPLs (MKL, ArmPL, cuSPARSE

and rocSPARSE).

— Our implementations strive to extract best performance on each
architecture but also allow direct calls to vendor TPLs when
possible or needed providing users with good baseline performance
for most common linear algebra kernels.

— Note that the results in figure to the right are subject to change
depending on the matrix used for comparison, here two matrices
representative of finite element/difference discretization were used

Time [s]

Skylake A64FX V100 MI100
Architecture

Sake: Kokkos Kernels

» What are the key bottlenecks, if any, to improving on-node performance, including plans for how
to address them? For example, will there be a need to explore risky, fundamentally new
algorithmic approaches, different mathematical formulations, or more fine tune for specific

hardware features?
— For Nvidia GPUs the performance is currently well established and no issues are foreseen

— For AMD GPUs further tuning of the native algorithms is needed to accommodate specificities of the
architecture such as wavefront size. Additionally rocBLAS and rocSPARSE needs to be expanded.

— For Intel GPUs more issues exist, the OpenMP Target and SYCL backends are still under development
with new bugs being reported to Kokkos. Some kernels are being refactored to favor reduction on single

value instead of reducing on array of values.

— New batched algorithms for dense and sparse linear algebra are being developed for specific
applications need.

Sake: Kokkos Kernels — recent work

* New algorithms
- MIS-2 kernels optimized and fully integrated with Trilinos/MueLu (multigrid package)
— Batched sparse linear algebra and solvers (SpMV, CG and GMRES)
— BsrMatrix and SpMV, will impactful for ATDM applications

e Library design
— New stream interface: supports GEMV and GEMM on CUDA and HIP
— Documentation publication automated at release time
— clang-format checked during CI testing
— Support for half precision

e Improvements
— Optimized batched GEMM interface and performance (+3% DRAM utilization)
— Add support for rocBLAS/rocSPARSE

Sake: Kokkos Kernels — upcoming work

o Algorithms
— further support for BsrMatrix format: SpGEMM, Jacobi and Gauss-Seidel
— batched Sparse Solvers: preconditioners, performance optimization and integration with applications
— Device callable ODE solvers, potentially batched implementation too
— Improve SpTRSV and SpILUK performance on device
— Improve SpGEMM performance

 Library design
- expand Stream interface to more kernels
— Re-organize library with multiple build targets (allows subset of feature to be compiled)
— Provide iterative solver interface (call from host to GPU)
— Improve SYCL and OpenMP Target support and performance

