
AMD GPU Documentation,

Benchmarking, and

Roadmap

Justin Chang, Suyash Tandon, Bill Brantley

2 |

[Public]

Who are we?

• Part of the Data Center GPU Software Solutions Group

• Role comprises generally of three tasks:

1. Application porting and optimization – working with code owners

2. Provide feedback to ROCm developers and hardware architects

3. Train people to leverage our data center GPUs

3 |

[Public]

Questions often asked

1. This new ROCm release broke/regressed my application, what should I do?

2. Which tools should I use to profile my code?

3. What optimization tips and tricks do you have for performance improvements?

4. Where can I find documentation?

4 |

[Public]

Official ROCm documentation

https://rocm.docs.amd.com

GitHub repository: https://github.com/RadeonOpenCompute/ROCm

Comprehensive documentation tailored to each ROCm version:

• Supported GPUs and OS

• Installing ROCm

• Compilers and tools

• HIP and math library APIs

• Link to the whitepapers

• Code examples

https://rocm.docs.amd.com/
https://github.com/RadeonOpenCompute/ROCm

5 |

[Public]

https://gpuopen.com/learn/amd-lab-notes

AMD lab notes

GitHub repository: https://github.com/AMD/amd-lab-notes

Technical blog post series covering:

• Lessons learned from tuning a wide

range of applications, libraries, and
frameworks

• Implementations of computational
science algorithms such as PDE

discretizations, linear algebra,
solvers, and more

• Instructions, guidance, and
references on using libraries and

tools from the ROCm software stack

• Best practices for porting and

optimizing both HPC an AI
applications

• Monthly release cadence

https://gpuopen.com/learn/amd-lab-notes
https://github.com/AMD/amd-lab-notes

6 |

[Public]

Current AMD lab notes

Topic Description

Matrix cores Discusses how to leverage AMD GPU’s matrix core processing

units to accelerate GEMM computations

Finite Difference Method - Laplacian Three-part blog series. Develops and optimizes a HIP kernel

performing a finite difference operator for the Laplace operator

ROCm installation Outlines three possible ways to quickly install specific versions

of ROCm on your Ubuntu OS desktop/server

MI200 memory space overview Provides a high-level overview of the MI200 memory

architecture and all the different use cases

Profiling on AMD hardware Covers the various profiling tools for AMD hardware and why a

developer might leverage one tool over another

Register Pressure Emphasizes the importance of understanding and controlling

register usage when designing high performance GPU kernels

7 |

[Public]

Finite Difference Method – Laplacian Part 1

A three-part blog series covering a standard finite

difference discretization of the Laplace operator. We begin

with a simple HIP implementation:

Provided in this blog series are:

• Code examples for users to experiment around

with

• Rocprof numbers guiding readers on the limiting

factors of performance

• Roofline methodology to estimate the expected

performance target

• Initial performance is not great

• Next two parts explain possible ways to improve

Full blog: https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part1/

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part1/

8 |

[Public]

Finite Difference Method – Laplacian Part 2 & 3

Optimization tricks to incrementally improve the performance:

• Loop tiling
• Reordered memory access patterns
• Launch bounds

• Nontemporal memory access

Full blog: https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part2/

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part2/

9 |

[Public]

MI200 memory space overview

The HIP API supports a wide variety of allocation methods for host and device memory. This post

specifically focuses on the MI200 series GPUs and:

1. Introduces a set of commonly used memory spaces

2. Identifies what makes each memory space unique

3. Discusses some common use cases for each space

Specific topics cover:

• Host vs device memory

• Pageable vs pinned (host) memory

• Coarse-grained vs fine-grained coherence

• Managed memory

• Page migrations

Full details and code snippets: https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-mi200-

memory-space-overview/

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-mi200-memory-space-overview/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-mi200-memory-space-overview/

10 |

[Public]

Introduction to profiling tools for AMD hardware

Full blog with references to the appropriate documentation

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-profilers-readme/

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-profilers-readme/

11 |

[Public]

Future AMD lab notes

Topic Tentative Description

Jacobi Solver – HIP/OpenMP Demonstrates how to implement a Jacobi solver in both HIP

and OpenMP target offloading

GPU aware MPI How to build and enable GPU aware communication across

various MPI implementations (OpenMPI, Cray MPICH, etc.)

Sparse Matrix-Vector Multiply Develop a HIP implementation of the SpMV operation, covering

implementations like CSR and Ellpack

Reading ISA Provides the necessary training to allow users to read and

understand Instruction Set Architecture (ISA) for AMD GPU

Graph analytics Implements common graph algorithms like Breadth-First Search

(BFS) on AMD GPUs and compares against Gunrock

Seismic stencil codes Applies optimization techniques to high-order finite difference

schemes commonly seen in seismic wave propagation

If you have any questions or comments, please reach out to us on GitHub discussions:

https://github.com/amd/amd-lab-notes/discussions

https://github.com/amd/amd-lab-notes/discussions

12 |

[Public]

PETSc on AMD GPUs

Introduced Completed the HIP backend to PETSc

late last year.

• Initially part of the OpenFOAM® application

porting and optimization effort.

• OpenFOAM® community preferred not to use

the Kokkos backend of PETSc

• AMD ported the PETSc Mat class to the HIP

backend in mid 2021, finishing in late 2022

One possible way of building with HIP/ROCm

NOTE: Due to the ever-changing nature of the ROCm software ecosystem, new releases will

occasionally break something. Our team is working on QA/CI for ROCm releases. In the
meantime, please report issues to me @jychang48 on GitLab®

13 |

[Public]

• A note on naming conventions:

• roc* -> AMGCN library usually written in HIP

• cu* -> NVIDIA PTX libraries

• hip* -> usually interface layer on top of roc*/cu* backends

• hip* libraries:

• Can be compiled by hipcc and can generate a call for the

device you have:

• hipcc->clang->AMD GCN ISA

• hipcc->nvcc (inlined)->NVPTX

• Just a thin wrapper that marshals calls off to a “backend” library:

• corresponding roc* library backend containing optimized GCN

• corresponding cu* library backend containing NVPTX for NVIDIA devices

AMD GPU Math Libraries

hipBLAS

rocBLAS cuBLAS

hipSPARSE

rocSPARSE cuSPARSE

We chose to port Mat class with hip* libraries because

1. Vec class already ported using hip*

2. Easier to implement

However, we recommend using roc* libraries for greatest performance benefits

14 |

[Public]

PETSc GPU benchmark – Overview

• 27-point finite difference stencil for the Poisson in 3D, exact solution u(x,y,z) = 1.0
• Located at: src/ksp/ksp/tutorials/bench_kspsolve.c
• Uses MatSetValuesCOO()to assemble the Matrix

• Designed to measure only the performance of KSPSolve()or just MatMult()

• Intentionally avoids use of DMDA or DMPlex to mimic how third-party applications leverage PETSc

Not limited to just GPU use

Can be used to quickly compare different solvers, backends, software versions, or even hardware

15 |

[Public]

PETSc GPU benchmark – Implementation details

Step 0 – Read command-line arguments

Step 1 – Create Vecs and Mat:

• Create the Mat Object and split across MPI

ranks

• Allocate three COO arrays of size nnz based

on user.Istart, user.Iend, and user.n

• Fill three COO arrays with corresponding FD

coefficients and row/column indices

• Spawn Vecs and set exact solution 1.0

• Compute RHS Vec b

Step 2 – Measure performance

• Run MatMult() or KSPSolve()

Step 3 (KSPSolve only) – Compute error norm

See bench_kspsolve.c for full implementation details

16 |

[Public]

Work-time spectrum (MatMult only)

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

1.60E+02

1.80E+02

2.00E+02

50 75 100 125 150 175 200 225 250 275 300

G
flo

p
s
/s

e
c

n

RX 6900XT RX 7900 XTX MI50 MI100 MI210

Testing conducted on single GPUs using ROCm version 5.4.0-72. The reported Gflops/sec are not validated performance numbers and are provided only as proof-of-concept. Actual

Gflops/sec depend on multiple factors including system configuration and environment settings, reproducibility of the performance is not guaranteed.

• Problem size is scaled up on a single AMD

Radeon™/Instinct™ GPU

• Starting with –n 50 (125k DoF, 3,241,792 nnz)

• Ending with –n 300 (27M DoF, 724,150,792 nnz)

• Only the MatMult()operation is examined

• HIP backend built using ROCm 5.4.0

NOTE: Missing bars denote lack of GPU memory

17 |

[Public]

Work-time spectrum (KSPSolve)

Testing conducted on single GPUs using ROCm version 5.4.0-72. The reported DoFs/sec are not validated performance numbers and are provided only as proof-of-concept. Actual

DoFs/sec depend on multiple factors including system configuration and environment settings, reproducibility of the performance is not guaranteed.

• GMRES + ILU(0) solve (out-of-box

configuration) is performed on the same

problem sizes

• KSP iteration count grows with problem size

• Inverse correlation between DoFs/sec and KSP

iterations

• If unusual trend in performance observed:

1. –log_view to identify regions of interest

2. Omniperf to identify why region performs

the way it does

NOTE: Other solvers and ROCm versions may will

exhibit different trends

0

50

100

150

200

250

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

50 75 100 125 150 175 200 225 250 275 300

K
S

P
 it

e
rs

D
o

F
s
/s

e
c

n

RX 6900XT RX 7900 XTX MI50

MI100 MI210 KSP iters

18 |

[Public]

Future plans for the PETSC GPU benchmark

• (Must have) Solve more than just the Poisson equation, possibly Q2 Elasticity

• (Must have) Allow users to provide their own matrix and vector

• (Nice to have) Reconsider leveraging PETSc DM objects

• (Nice to have) Incorporate into the PETSc library

19 |

[Public]

AMD Data Center GPU Roadmap

Source: https://ir.amd.com/news-events/financial-analyst-day

https://ir.amd.com/news-events/financial-analyst-day

20 |

[Public]

MI300 Architectural Innovation at the Next Level

AMD Instinct™

 MI300

AMD Instinct™

MI250X

8x AI Performance

5x AI perf-per-watt

▪ 5nm process technology with 3D stacking

▪ Next-gen Infinity Cache™ and 4th Gen Infinity Fabric base die

▪ New Math formats

▪ Unified memory APU Architecture

AMD Instinct™

 MI300

AMD Instinct™

MI250X

GPU

CPU

Endnotes: MI300-003, MI300-004

Estimated

Estimated

21 |

[Public]

3D CPU+GPU Integration for Next-Level Efficiency

AMD CDNA™ 2 Coherent Memory Architecture AMD CDNA™ 3 Unified Memory APU Architecture

▪ Eliminates redundant

memory copies

▪ High bandwidth, low

latency communication

▪ Low TCO with unified

memory APU package

Next-Gen AMD Instinct™ APU

Unified Memory
(HBM)

▪ Simplifies programming

▪ Low overhead 3rd Gen

Infinity interconnect

▪ Industry standard

modular design

GPUCPU

GPU
Memory

(HBM)

CPU
Memory
(DRAM)

AMD Instinct™ MI250 Accelerator AMD Instinct™ MI300 Accelerator

22 |

[Public]

APU programming model (HIP)

• GPU memory allocation on Device

• Explicit memory management between CPU & GPU

• Synchronization Barrier

23 |

[Public]

APU programming model (OpenMP® Target Offloading)

• GPU memory allocation on Device

• Explicit memory management between CPU & GPU

• Synchronization Barrier

24 |

[Public]

What this APU means for PETSc

• Single set of memory, no more time spent on memory transfers or page migrations

• Continue using the same hip*/roc* math libraries with system memory

• Serial or smaller workloads may not need HIP/accelerated code

• Programming challenge: portability between an APU and traditional CPUs/GPUs

• AMD welcomes feedback on how we can help improve the ROCm ecosystem

25 |

[Public]

Concluding Remarks

• AMD has provided at least two mutual sources of documentation for ROCm needs

• The AMD lab notes is a blog series containing useful tips for both HPC and AI applications

• The PETSc HIP backend based on hip* libraries was recently introduced for the Mat class

• A KSPSolve() benchmark was introduced to allow users to quickly compare the

performance of different solvers, backends, and hardware

• The MI300 APU has a unified memory architecture and could offer PETSc tremendous

improvements

27 |

[Public]

Disclaimer and Attritions

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limi ted to product and roadmap

changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software

changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD

reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such

revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR

ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF

ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2023 Advanced Micro Devices, Inc. all rights reserved. AMD, the AMD arrow, AMD CDNA™, AMD Instinct™, AMD Radeon™, AMD RDNA™, ROCm, and

combinations thereof, are trademarks of Advanced Micro Devices, Inc. Other names are for informational purposes only and may be trademarks of their

respective owners. PCIe® is a registered trademark of PCI-SIG Corporation. GitLab is a registered trademark of GitLab, Inc. OPENFOAM® is a registered

trademark of OpenCFD Limited, producer and distributor of the OpenFOAM software via www.openfoam.com. The OpenMP name and the OpenMP logo are

registered trademarks of the OpenMP Architecture Review Board.

http://www.openfoam.com/

28 |

[Public]

Endnotes

End note MI300-003. Measurements by AMD Performance Labs June 4, 2022 on current specification and/or estimation for estimated delivered FP8 floating point

performance with structure sparsity supported for AMD Instinct™ MI300 vs. MI250X FP16 (306.4 estimated delivered TFLOPS based on 80% of peak theoretical

floating-point performance). MI300 performance based on preliminary estimates and expectations. Final performance may vary. MI300-003.

Measurements conducted by AMD Performance Labs as of Jun 7, 2022 on the current specification for the AMD Instinct™ MI300 APU (850W) accelerator designed

with AMD CDNA™ 3 5nm FinFET process technology, projected to result in 2,507 TFLOPS estimated delivered FP8 with structured sparsity floating-point

performance.

End note: MI300-04. Estimated delivered results calculated for AMD Instinct™ MI250X (560W) GPU designed with AMD CDNA™ 2 6nm FinFET process technology

with 1,700 MHz engine clock resulted in 306.4 TFLOPS (383.0 peak FP16 x 80% = 306.4 delivered) FP16 floating-point performance. Actual results based on

production silicon may vary.MI300-04

	Slide 1: AMD GPU Documentation, Benchmarking, and Roadmap
	Slide 2: Who are we?
	Slide 3: Questions often asked
	Slide 4: Official ROCm documentation
	Slide 5: AMD lab notes
	Slide 6: Current AMD lab notes
	Slide 7: Finite Difference Method – Laplacian Part 1
	Slide 8: Finite Difference Method – Laplacian Part 2 & 3
	Slide 9: MI200 memory space overview
	Slide 10: Introduction to profiling tools for AMD hardware
	Slide 11: Future AMD lab notes
	Slide 12: PETSc on AMD GPUs
	Slide 13: AMD GPU Math Libraries
	Slide 14: PETSc GPU benchmark – Overview
	Slide 15: PETSc GPU benchmark – Implementation details
	Slide 16: Work-time spectrum (MatMult only)
	Slide 17: Work-time spectrum (KSPSolve)
	Slide 18: Future plans for the PETSC GPU benchmark
	Slide 19: AMD Data Center GPU Roadmap
	Slide 20: MI300 Architectural Innovation at the Next Level
	Slide 21: 3D CPU+GPU Integration for Next-Level Efficiency
	Slide 22: APU programming model (HIP)
	Slide 23: APU programming model (OpenMP® Target Offloading)
	Slide 24: What this APU means for PETSc
	Slide 25: Concluding Remarks
	Slide 26
	Slide 27: Disclaimer and Attritions
	Slide 28: Endnotes

