
AMD GPU Documentation,

Benchmarking, and

Roadmap

Justin Chang, Suyash Tandon, Bill Brantley

2 |

[Public]

Who are we?

Å Part of the Data Center GPU Software Solutions Group

Å Role comprises generally of three tasks:

1. Application porting and optimization ï working with code owners

2. Provide feedback to ROCm developers and hardware architects

3. Train people to leverage our data center GPUs

3 |

[Public]

Questions often asked

1. This new ROCm release broke/regressed my application, what should I do?

2. Which tools should I use to profile my code?

3. What optimization tips and tricks do you have for performance improvements?

4. Where can I find documentation?

4 |

[Public]

Official ROCm documentation

https://rocm.docs.amd.com

GitHub repository: https://github.com/RadeonOpenCompute/ROCm

Comprehensive documentation tailored to each ROCm version:

Å Supported GPUs and OS

Å Installing ROCm

Å Compilers and tools

Å HIP and math library APIs

Å Link to the whitepapers

Å Code examples

https://rocm.docs.amd.com/
https://github.com/RadeonOpenCompute/ROCm

5 |

[Public]

https://gpuopen.com/learn/amd-lab-notes

AMD lab notes

GitHub repository: https://github.com/AMD/amd-lab-notes

Technical blog post series covering:

Å Lessons learned from tuning a wide

range of applications, libraries, and
frameworks

Å Implementations of computational
science algorithms such as PDE

discretizations, linear algebra,
solvers, and more

Å Instructions, guidance, and
references on using libraries and

tools from the ROCm software stack

Å Best practices for porting and

optimizing both HPC an AI
applications

Å Monthly release cadence

https://gpuopen.com/learn/amd-lab-notes
https://github.com/AMD/amd-lab-notes

6 |

[Public]

Current AMD lab notes

Topic Description

Matrix cores Discusses how to leverage AMD GPUôs matrix core processing

units to accelerate GEMM computations

Finite Difference Method - Laplacian Three-part blog series. Develops and optimizes a HIP kernel

performing a finite difference operator for the Laplace operator

ROCm installation Outlines three possible ways to quickly install specific versions

of ROCm on your Ubuntu OS desktop/server

MI200 memory space overview Provides a high-level overview of the MI200 memory

architecture and all the different use cases

Profiling on AMD hardware Covers the various profiling tools for AMD hardware and why a

developer might leverage one tool over another

Register Pressure Emphasizes the importance of understanding and controlling

register usage when designing high performance GPU kernels

7 |

[Public]

Finite Difference Method ï Laplacian Part 1

A three-part blog series covering a standard finite

difference discretization of the Laplace operator. We begin

with a simple HIP implementation:

Provided in this blog series are:

Å Code examples for users to experiment around

with

Å Rocprof numbers guiding readers on the limiting

factors of performance

Å Roofline methodology to estimate the expected

performance target

Å Initial performance is not great

Å Next two parts explain possible ways to improve

Full blog: https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part1/

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part1/

8 |

[Public]

Finite Difference Method ï Laplacian Part 2 & 3

Optimization tricks to incrementally improve the performance:

Å Loop tiling
Å Reordered memory access patterns
Å Launch bounds

Å Nontemporal memory access

Full blog: https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part2/

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part2/

9 |

[Public]

MI200 memory space overview

The HIP API supports a wide variety of allocation methods for host and device memory. This post

specifically focuses on the MI200 series GPUs and:

1. Introduces a set of commonly used memory spaces

2. Identifies what makes each memory space unique

3. Discusses some common use cases for each space

Specific topics cover:

Å Host vs device memory

Å Pageable vs pinned (host) memory

Å Coarse-grained vs fine-grained coherence

Å Managed memory

Å Page migrations

Full details and code snippets: https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-mi200-

memory-space-overview/

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-mi200-memory-space-overview/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-mi200-memory-space-overview/

10 |

[Public]

Introduction to profiling tools for AMD hardware

Full blog with references to the appropriate documentation

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-profilers-readme/

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-profilers-readme/

11 |

[Public]

Future AMD lab notes

Topic Tentative Description

Jacobi Solver ï HIP/OpenMP Demonstrates how to implement a Jacobi solver in both HIP

and OpenMP target offloading

GPU aware MPI How to build and enable GPU aware communication across

various MPI implementations (OpenMPI, Cray MPICH, etc.)

Sparse Matrix-Vector Multiply Develop a HIP implementation of the SpMV operation, covering

implementations like CSR and Ellpack

Reading ISA Provides the necessary training to allow users to read and

understand Instruction Set Architecture (ISA) for AMD GPU

Graph analytics Implements common graph algorithms like Breadth-First Search

(BFS) on AMD GPUs and compares against Gunrock

Seismic stencil codes Applies optimization techniques to high-order finite difference

schemes commonly seen in seismic wave propagation

If you have any questions or comments, please reach out to us on GitHub discussions:

https://github.com/amd/amd-lab-notes/discussions

https://github.com/amd/amd-lab-notes/discussions

12 |

[Public]

PETSc on AMD GPUs

Introduced Completed the HIP backend to PETSc

late last year.

Å Initially part of the OpenFOAM® application

porting and optimization effort.

Å OpenFOAM® community preferred not to use

the Kokkos backend of PETSc

Å AMD ported the PETSc Mat class to the HIP

backend in mid 2021, finishing in late 2022

One possible way of building with HIP/ROCm

NOTE: Due to the ever-changing nature of the ROCm software ecosystem, new releases will

occasionally break something. Our team is working on QA/CI for ROCm releases. In the
meantime, please report issues to me @jychang48 on GitLab®

13 |

[Public]

ÅA note on naming conventions:

Åroc* -> AMGCN library usually written in HIP

Åcu* -> NVIDIA PTX libraries

Åhip* -> usually interface layer on top of roc*/cu* backends

Åhip* libraries:

ÅCan be compiled by hipcc and can generate a call for the

device you have:

Åhipcc->clang->AMD GCN ISA

Åhipcc->nvcc (inlined)->NVPTX

ÅJust a thin wrapper that marshals calls off to a ñbackendò library:

Åcorresponding roc* library backend containing optimized GCN

Åcorresponding cu* library backend containing NVPTX for NVIDIA devices

AMD GPU Math Libraries

hipBLAS

rocBLAS cuBLAS

hipSPARSE

rocSPARSE cuSPARSE

We chose to port Mat class with hip* libraries because

1. Vec class already ported using hip*

2. Easier to implement

However, we recommend using roc* libraries for greatest performance benefits

14 |

[Public]

PETSc GPU benchmark ï Overview

Å 27-point finite difference stencil for the Poisson in 3D, exact solution u(x,y,z) = 1.0
Å Located at: src / ksp / ksp /tutorials/ bench_kspsolve.c

ÅUses MatSetValuesCOO () to assemble the Matrix

Å Designed to measure only the performance of KSPSolve () or just MatMult ()

Å Intentionally avoids use of DMDA or DMPlex to mimic how third-party applications leverage PETSc

Not limited to just GPU use

Can be used to quickly compare different solvers, backends, software versions, or even hardware

15 |

[Public]

PETSc GPU benchmark ï Implementation details

Step 0 ï Read command-line arguments

Step 1 ï Create Vecs and Mat:

Å Create the Mat Object and split across MPI

ranks

Å Allocate three COO arrays of size nnz based

on user.Istart, user.Iend, and user.n

Å Fill three COO arrays with corresponding FD

coefficients and row/column indices

Å Spawn Vecs and set exact solution 1.0

Å Compute RHS Vec b

Step 2 ï Measure performance

Å Run MatMult() or KSPSolve()

Step 3 (KSPSolve only) ï Compute error norm

See bench_kspsolve.c for full implementation details

16 |

[Public]

Work-time spectrum (MatMult only)

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

1.60E+02

1.80E+02

2.00E+02

50 75 100 125 150 175 200 225 250 275 300

G
flo

p
s
/s

e
c

n

RX 6900XT RX 7900 XTX MI50 MI100 MI210

Testing conducted on single GPUs using ROCm version 5.4.0-72. The reported Gflops/sec are not validated performance numbers and are provided only as proof-of-concept. Actual

Gflops/sec depend on multiple factors including system configuration and environment settings, reproducibility of the performance is not guaranteed.

Å Problem size is scaled up on a single AMD

RadeonÊ/InstinctÊ GPU

Å Starting with ïn 50 (125k DoF, 3,241,792 nnz)

Å Ending with ïn 300 (27M DoF, 724,150,792 nnz)

Å Only the MatMult () operation is examined

Å HIP backend built using ROCm 5.4.0

NOTE: Missing bars denote lack of GPU memory

17 |

[Public]

Work-time spectrum (KSPSolve)

Testing conducted on single GPUs using ROCm version 5.4.0-72. The reported DoFs/sec are not validated performance numbers and are provided only as proof-of-concept. Actual

DoFs/sec depend on multiple factors including system configuration and environment settings, reproducibility of the performance is not guaranteed.

Å GMRES + ILU(0) solve (out-of-box

configuration) is performed on the same

problem sizes

Å KSP iteration count grows with problem size

Å Inverse correlation between DoFs/sec and KSP

iterations

Å If unusual trend in performance observed:

1. ïlog_view to identify regions of interest

2. Omniperf to identify why region performs

the way it does

NOTE: Other solvers and ROCm versions may will

exhibit different trends

0

50

100

150

200

250

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

50 75 100 125 150 175 200 225 250 275 300

K
S

P
 it

e
rs

D
o

F
s
/s

e
c

n

RX 6900XT RX 7900 XTX MI50

MI100 MI210 KSP iters

18 |

[Public]

Future plans for the PETSC GPU benchmark

Å (Must have) Solve more than just the Poisson equation, possibly Q2 Elasticity

Å (Must have) Allow users to provide their own matrix and vector

Å (Nice to have) Reconsider leveraging PETSc DM objects

Å (Nice to have) Incorporate into the PETSc library

19 |

[Public]

AMD Data Center GPU Roadmap

Source: https://ir.amd.com/news-events/financial-analyst-day

https://ir.amd.com/news-events/financial-analyst-day

20 |

[Public]

MI300 Architectural Innovation at the Next Level

AMD InstinctÊ

 MI300

AMD InstinctÊ

MI250X

8x AI Performance

5x AI perf-per-watt

Á5nm process technology with 3D stacking

ÁNext-gen Infinity CacheÊand 4th Gen Infinity Fabric base die

ÁNew Math formats

ÁUnified memory APU Architecture

AMD InstinctÊ

 MI300

AMD InstinctÊ

MI250X

GPU

CPU

Endnotes: MI300-003, MI300-004

Estimated

Estimated

21 |

[Public]

3D CPU+GPU Integration for Next-Level Efficiency

AMD CDNAÊ 2 Coherent Memory Architecture AMD CDNAÊ 3 Unified Memory APU Architecture

ÁEliminates redundant

memory copies

ÁHigh bandwidth, low

latency communication

ÁLow TCO with unified

memory APU package

Next-Gen AMD InstinctÊ APU

Unified Memory
(HBM)

ÁSimplifies programming

ÁLow overhead 3rd Gen

Infinity interconnect

ÁIndustry standard

modular design

GPUCPU

GPU
Memory

(HBM)

CPU
Memory
(DRAM)

AMD InstinctÊ MI250 Accelerator AMD InstinctÊ MI300 Accelerator

22 |

[Public]

APU programming model (HIP)

ÅGPU memory allocation on Device

ÅExplicit memory management between CPU & GPU

ÅSynchronization Barrier

