D GPU Documentation,
nchmarking, and
admap

Justin Chang, Suyash Tandon, Bill Brantley

AMD N

together we advance_

Who are we?

A Part of the Data Center GPU Software Solutions Group

A Role comprises generally of three tasks:
1. Application porting and optimizationT working with code owners
2. Provide feedback to ROCm developers and hardware architects

3. Train people to leverage our data center GPUs

Questions often asked

1. This new ROCm release broke/regressed my application, what should | do?

2. Whichtools should | use to profile my code?

3. What optimization tips and tricks do you have for performance improvements?

4. Wherecan |l find documentation?

Official ROCm documentation

https://rocm.docs.amd.com Comprehensive documentation tailored to each ROCm version:
ROCm Documentation is transitioning to this site. For the legacy documentation, please visit c/oc<.amd.com. For more information or to provide feedback about this documentation
transition, please see our announcement. A Su pported G PUS and OS
AMDZU ROCm™ Platform
GitHub Community AMD Lab Notes Infinity Hub Support Feedback A I n Stal I I n g RO C m

<

ROCm Documentation A Com |Iers and tOOlS
AMD ROCm™ Platform - Powering Your GPU P

Computational Needs _
A HIP and math library APIs

Applies to Linux B 2023-05-24 © 4 min read time

What is ROCm?

A Link to the whitepapers

A Code examples

APls and Reference

All

GitHub repository: https://github.com/RadeonOpenCompute/ROCm

https://rocm.docs.amd.com/
https://github.com/RadeonOpenCompute/ROCm

AMD lab notes

https://gpuopen.com/learn/amd-lab-notes Technical blog post series covering:

= AMDOI
Eli GPUODEH | Let's build everything...

nnnnna
SOFTWARE DOCUMENTATION
Home » Blogs » AMD lab notes 0 @ @ o

e

@ Oricinally posted November 14, 2022

AMD lab notes~»

@
- AMDC1
el Computational and Data science have emerged as powerful modes of scientific inquiry and engineering design. Often referred to

LAS NAT=ES

as the “third” and “fourth” pillars of the scientific method, they are interdisciplinary fields where computer models and
simulations of physical, biological, or data-driven processes are used to probe, predict, and analyze complex systems of interest.

All of this necessitates the use of more computational power and resources to keep up with increasing scientific and industrial

Home demands. In order to fully utilize emerging hardware designed to tackle these challenges, the development of robust software

@ AMD lab notes for high-performance computing (HPC) and Machine Learning (ML) applications is now more crucial than ever. This challenge is
© Finite difference method - Laplacian part 1 made even greater as hardware trends continue to achieve massive parallelism through GPU acceleration, which requires the
© Finite difference method - Laplacian part 2 adoption of sophisticated heterogenous programming environments and carefully tuned application code.

© AMD matrix cores)) o o)

In this “AMD lab notes” blog series, we share the lessons learned from tuning a wide range of scientific applications, libraries,
© AMD ROCm™ installation))) ‘ .

and frameworks for AMD GPUs. Our goal with these lab notes is to provide readers with the following:
° AMD Instinct™ MI200 Memory Space

Overview « AMD GPU implementations of computational science algorithms such as PDE discretizations, linear algebra, solvers, and

GitHub repository: https://github.com/AMD/amd-lab-notes

Lessonslearned from tuning a wide

range of applications, libraries, and
HEEYI S

Implementations of computational
science algorithms such as PDE
discretizations, linear algebra,
solvers, and more

Instructions, guidance, and
references on using libraries and
tools from the ROCm software stack

Bestpractices for porting and
optimizing both HPC an Al
applications

Monthly release cadence

https://gpuopen.com/learn/amd-lab-notes
https://github.com/AMD/amd-lab-notes

Current AMD lab notes

Topic Description

Matrix cores Di scusses how to | everage AMD
units to accelerate GEMM computations

Finite Difference Method - Laplaciar Three-part blog series. Develops and optimizes a HIP kernel
performing a finite difference operator for the Laplace operator

ROCm installation Outlines three possible ways to quickly install specific versions
of ROCm on your Ubuntu OS desktop/server

MI200 memory space overview Provides a high-level overview of the MI200 memory
architecture and all the different use cases

Profiling on AMD hardware Covers the various profiling tools for AMD hardware and why a
developer might leverage one tool over another

Register Pressure Emphasizes the importance of understanding and controlling
register usage when designing high performance GPU kernels

Finite Difference Method T Laplacian Part 1

Athree-part blog series covering a standard finite Provided in this blog series are:
difference discretization of the Laplace operator. We begin
with a simple HIP implementation: Code examples for users to experiment around
with
%? template <ty?;{—1h T>
B il e el S e s Rocprof numbers guiding readers on the limiting
g- int 1 = threadIdxz.x + blockIdx.x * blockDim.x; faCtorS Of performance
- int j = threadIdx.y + blockIdx.y * blockD?m.y;
SNT KT Threadidx.z ® blockidi.Z T blockbim.zs Roofline methodology to estimate the expected
R R performance target
16 J == J >= ny -
37 E == k »>= nz - 1)
38 return;
;: const int slice = nx * ny;
41 size t pos = 1 + nx * j + slice * k;
42
43
44 flpos] = ulpos] * invhxyz2
45 + (u[pos - 1] + ul[pos + 1]} * invhx2
46 + (u[pos - nxl] + uf[pos + nx]}) * invhy2
47 + {(u[pos - slice] + u[pos + slice]} * invhz2;
48 1}

Full blog: https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part1/

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part1/

Finite Difference Method T Laplacian Part 2 & 3

Optimization tricks to incrementally improve the performance:

(%]
= O WD W =d

Ll Gl B0 b DONDO

LR s L [

L L L G Cd L
ST O s B o o BOCS: (

ST
Lo

[#3]

[1=9
[1=9

[1=9 [T
0 00 =1 &y LF

1
NN

v e

Lroor

Loop tiling

Reordered memory access patterns

Launch bounds
Nontemporal memory access

template <typenams T>
.. launch bounds (LB}

L0 LnoLn

wLnoLnoLnown

const T * u, int nx, int nz,

__gkekal volid

lzplacian kernel (T * £,

int ny,

T invhx2, T invhy2, T invhz2, T invhxyz2)} {
int 1 = threadIdx.x + blockIdx.x * blockDim.x;
int j = m* (threadIdx.y + blockIdx.y * blockDim.¥y) ;
int k = threadIdx.z + blockIdx.z * blockDim.z;
if (1 =— i >= nx - i
k == k >= nz - 1)
return;
const int slice = nx * ny;
size t pos = 1 + nx * j + slice * k;

T L;tm] = E }i

T center;

(e e o o w CS [RS NS [QR A B I S o o T 3 O O T 0 O A T T 53

(S gt SN VI)

W0 =

o

[S I R N I b

e JN o B w s BCS 5 3

o Oy =

W 00 =] Oy

o

ol W ko

[w e T I Y

o

1

ir

for {(int n

Lu[n] +=

Lu[;] += 3

for {int n =

Lu[;] +;

center =
Lu[n] +=

_; n < ﬁ; n++)
u[pos — slice + n*nx]

> ? ul[pos —
P n < m; on+d) |

ul[pos — + n¥*nx]

ulpos + n*nxl;
center * invhxyz2;

*nx)

* invhz2;

* invhy2 : 0O;

* invhx2;

Lu[n] += ulpos + + n*nx]

* invhx2;

if (n >)-Lu[n— 1 +; center * invhy2;

1if (n < m - } Iuln+l] 4= center * invhyZ2;

¥

Lu[ﬁ— 1

1y 10OC

for {(int n =

Lu[n] += ulpos + slice + n*nx]

1LLwlrr=T"] >

__builtin nontemporal store(Lul[n],&f[pos + n*nx]);

+= j < ny — m ? ul[pos + m*nx]

;n o< ﬁ; n++)

; n < m: ntid
ze n + j < ny —

* inwvhy2

* invhz2;

)

Full blog: https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part2/

r

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part2/

MI200 memory space overview

The HIP API supports a wide variety of allocation methods for host and device memory. This post
specifically focuses on the MI200 series GPUs and:

1. Introduces a set of commonly used memory spaces
2. ldentifies what makes each memory space unique
3. Discusses some common use cases for each space

Specific topics cover:

Host vs device memory

Pageable vs pinned (host) memory
Coarse-grained vs fine-grained coherence
Managed memory

Page migrations

o o o T I

Full details and code snippets: https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-mi200-
memory-space-overview/

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-mi200-memory-space-overview/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-mi200-memory-space-overview/

Introduction to profiling tools for AMD hardware

Description

AMD's x86-64 processor core architecture design. Used by the AMD EPYC™, AMD Ryzen™, AMD Ryzen™ PRO, and AMD
Threadripper™ PRO processor series.

AMD's Traditional GPU architecture optimized for graphically demanding workloads like gaming and visualization.
Includes the RX 5000, 6000 and 7000 GPUs.

RDNA™

AMD's Compute dedicated GPU architecture optimized for accelerating HPC, ML/AIl, and data center type workloads.
Includes the AMD Instinct™ MI50/60, MI100, and MI200 series accelerators.

CDNA™

Linux®
AMD Profiling Tools AMD "Zen" Core RDNA™ CDNA™ Windows Linux®

. Objective Where should | focus my time? How well am | using the hardware? Why am | seeing this performance?
ROC-profiler ed

Omniperf

Omnitrace N
Approach Timelines and traces Roofline Hardware counters
Radeon™ GPU Profiler Not supported : v

AMD uProf

AMD uProf AMD uProf
A :) AMD uProf
* Full support | % Partial support Omnitrace Omnitrace

AMD uProf AMD uProf
CDNA™ Omnitrace Omniperf Omnitrace / Omniperf
ROC-profiler ROC-profiler

Radeon™ GPU Profiler Radeon™ GPU Profiler
RDNA™ Omnitrace Omnitrace
ROC-profiler ROC-profiler

Full blog with references to the appropriate documentation
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-profilers-readme/

10

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-profilers-readme/

Future AMD lab notes

Topic
Jacobi Solver 1 HIP/OpenMP

GPU aware MPI

Sparse Matrix-Vector Multiply
Reading ISA

Graph analytics

Seismic stencil codes

Tentative Description

Demonstrates how to implement a Jacobi solver in both HIP
and OpenMP target offloading

How to build and enable GPU aware communication across
various MPI implementations (OpenMPI, Cray MPICH, etc.)

Develop a HIP implementation of the SpMV operation, covering
implementations like CSR and Ellpack

Provides the necessary training to allow users to read and
understand Instruction Set Architecture (ISA) for AMD GPU

Implements common graph algorithms like Breadth-First Search
(BFS) on AMD GPUs and compares against Gunrock

Applies optimization techniques to high-order finite difference
schemes commonly seen in seismic wave propagation

If you have any questions or comments, please reach out to us on GitHub discussions:
https://github.com/amd/amd-lab-notes/discussions

11

https://github.com/amd/amd-lab-notes/discussions

PETSc on AMD GPUs

nrtroduced Completed the HIP backend to PETSc
late last year.

A Initially part of the OpenFOAM® application
porting and optimization effort.

A OpenFOAM® community preferred not to use
the Kokkos backend of PETSc

A AMD ported the PETSc Mat class to the HIP
backendin mid 2021, finishing in late 2022

£

a
£

One possible way of building with HIP/ROCm

f name ==

SYS
oS
sys.path.insert (0, os.path.abspath(1)
configure
ROCM PATH=
configure options = [
t+petsc hash pkgs,

r
+ROCM PATH+
+ROCM PATH,

configure.petsc configure (configure options)

NOTE: Due to the ever-changing nature of the ROCm software ecosystem, new releases will
occasionally break something. Our team is working on QA/CI for ROCm releases.

K]

AMD GPU Math Libraries

A A note on naming conventions:

hipBLAS
A roc* -> AMGCN library usually written in HIP P
A cu* -> NVIDIA PTX libraries -
rocBLAS
A hip* -> usually interface layer on top of roc*/cu* backends
A hip* libraries:
A Can be compiled by hipcc and can generate a call for the hipSPARSE
device you have:
A hipcc->clang->AMD GCN ISA r0cSPARSE -
A hipcc->nvcc (inlined)->NVPTX
AJust a thin wrapper that marshals calls off to

A corresponding roc* library backend containing optimized GCN
A corresponding cu* library backend containing NVPTX for NVIDIA devices
We chose to port Mat class with hip* libraries because

1. Vec class already ported using hip*
2. Easier to implement

a

14

PETSc GPU benchmark 1 Overview

A 27-point finite difference stencil for the Poisson in 3D, exact solution u(x,y,z) = 1.0
A Located at: src / ksp / ksp /tutorials/ bench_kspsolve.c
A Uses MatSetValuesCOO () to assemble the Matrix

A Designed to measure only the performance of KSPSolve () or just MatMult ()
A Intentionally avoids use of DMDA or DMPlex to mimic how third-party applications leverage PETSc

./bench kspsolve -mat type alijhipsparse -n 200 -matmult ./bench_kspsolve -mat type aijhipsparse -n 200

Test: MatMult perf?rmance B P?I?EDH . . Test: EKSP performance - Poisson
Input matrix: 27-pt finite difference stencil o o< . .
“n 200 Input matrix: 27-pt finite difference stencil
v -n 200
—its 100

DoFs = 8000000

Ll = Ol Number of nonzeros = 213847192

Mumber of nonzeros = 213847192

. Stepl - creating Vecs and Mat...
Stepl - creating Vecs and Mat... .
. . e e 100 ti Step2 - running ESPScolve() ...
=B BT LEELTELE 1] HHES . - - Step3 - calculating error norm...
?;;?age time: g.gggﬂig:egiﬁdﬁ / Error norm: 1.375e+00
s s et eps/sec KSP iters: 103
___ ESPSolve: 4.65272 seconds
FOM: 1.71%e406 DoFs/sec

Not limited to just GPU use T
Can be used to quickly compare different solvers, backends, software versions, or even hardware

15

PETSc GPU benchmark i Implementation details

Step 07 Read command-line arguments
Step 11 Create Vecs and Mat:

A Create the Mat Object and split across MPI
ranks

A

A Spawn Vecs and set exact solution 1.0
A Compute RHS Vec b

Step 21 Measure performance

A Run MatMult() or KSPSolve()

Step 3 (KSPSolve only) T Compute error norm

user.n ;
user.matmult PETSC_ FALSE;
user.its ;

PetscCall (PetscOptionsGetInt (o o ; &user.n, Y)s

PetscCall (PetscOptionsGetBool (a o ; &user.matmult, Hi s
PetscCall (PetscOptionsGetInt (. . , &user.its, Y

user.dim = user.n * user.n * user.n;

PetscCall (MatCreate (PETSC_COMM WORLD, &A));
PetscCall (MatSetSizes (A, PETSC DECIDE, PETSC DECIDE, user.dim, user.dim));
PetscCall (MatSetFromOptions (&)) ;

PetscCall (PetscSplitOwnership (PetscObjectComm((PetscObject)A), &nlocal, s&user.dim));

PetscCallMPI (MPI_Scan(&nlocal, suser.Istart, 1, MPIU INT, MPI_SUM, PetscObjectComm((PetscObject)’))):
user.Istart —= nlocal;

user.Iend = user.Istart + nlocal;

PetscCall (PreallocateCOO (R, &user));
PetscCall (Fil11lCOO (R, &user));

PetscCall (MatCreateVecs (A, &u, &b));

1f (luser.matmult) PetscCall (VecDuplicate(b, &x));
PetscCall (VecSet (u, Y-

PetscCall (MatMult (A, u, b));

PetscCall (PetscTime (&time start));
1if (user.matmult)
for (int i = 0; i < user.its; i++)
PetscCall (MatMult (&, u, b)):
PetscCall (KSPSolve (ksp, b, x));
PetscCall (PetscTime (stime end));

(luser.matmualt) {
PetscCall (VecRXPY (x, - y ua));
PetscCall (VecNorm(x, NORM 2, &norm)};
}

16

Work-time spectrum (MatMult only)

RX 6900XT ®mRX 7900 XTX =MI50 MI100 MI210
2.00E+02

1.80E+02 -

1.60E+02 -
1.40E+02 - : : : : : -

1.20E+02 . ! . ! . ! | |

(&]
(]
&
3 1.00E+02 : : : : : : : : 1

O
(8.00E+01
6.00E+01 |-

4.00E+01 - % —
2.00E+01 -gf —
0.00E+00

50

mpirun -n 1 ./bench kspsolve -—-matmult -mat type aijhipsparse -n Xl

100 125 150 175 200 225 250 275 300

A Problem size is scaled up on a single AMD
RadeonE /InstinctE GPU

Starting with T n 50 (125k DoF, 3,241,792 nnz)

Ending with T n 300 (27M DoF, 724,150,792 nnz)

Only the MatMult () operation is examined

o Do To Do

HIP backend built using ROCm 5.4.0

NOTE: Missing bars denote lack of GPU memory

17

Work-time spectrum (KSPSolve)

RX 6900XT mmmm RX 7900 XTX mmmm M|50
MI100 MI210 —o&— KSP iters

3.00E+06

2.50E+06

2.00E+06 —— 1 — t —

DoFs/sec

1.00E+06

5.00E+05

0.00E+00

mpirun —n 1

150E+06 — ¢ — 0 —

75 100 125 150 175 200 225 250 275 300
n

./bench kspsolve -matmult aijhipsparse -n X|

250

200

150

100

KSP iters

A GMRES + ILU(0) solve (out-of-box
configuration) is performed on the same

problem sizes

A KSP iteration count grows with problem size

A Inverse correlation between DoFs/sec and KSP
iterations

A If unusual trend in performance observed:

1. Tlog_view to identify regions of interest
2. Omniperf to identify why region performs
the way it does

NOTE: Other solvers and ROCm versions fay will
exhibit different trends

18

Future plans for the PETSC GPU benchmark

A (Must have) Solve more than just the Poisson equation, possibly Q2 Elasticity
A (Must have) Allow users to provide their own matrix and vector
A (Nice to have) Reconsider leveraging PETSc DM objects

A (Nice to have) Incorporate into the PETSc library

19

AMD Data Center GPU Roadmap

\MDZ1

INSTINCT

3 i

AMD Instinct™ MI100 AMD Instinct™ MI1200 AMD Innct“‘ MI300

AMD CDNA™ AMD CDNA™ 2 AMD CDNA™ 3
Ecosystem Growth Driving HPC and Al Data Center APU
to a New Frontier
First purpose-built GPU First multi-die data center GPU Breakthrough architecture designed
architecture for the data center expands scientific discovery and for leadership efficiency and
brings choice to Al training performance for HPC and Al

Source: https://iramd.com/news-e vents/financial-analyst-day

https://ir.amd.com/news-events/financial-analyst-day

MI300 Architectural Innovation at the Next Level

A5nm process technology with 3D stacking

ANext-gen Infinity CacheE and 4t Gen Infinity Fabric base die
ANew Math formats

AUnified memory APU Architecture

Estimated
AMD Instinctt
MI300 X Al Performance
AMD Instincté
MI250X
Estimated
A'mgsggé 5X Al perf-per-watt

AMD Instincte

MI250X

Endnotes: MI300-003, MI300-004

20

3D CPU+GPU Integration for Next-Level Efficiency

AMD CDNAE 2 Coherent Memory Architecture) AMD CDNAE 3 Unified Memory APU Architecture

AMD InstinctE MI250 Accelerator AMD InstinctE MI300 Accelerator
A Simplifies programming CPU GPU A Eliminates rgdundant Next.Gen AMD InstinctE APU
] memory copies
A Low overhead 3" Gen
Infinity interconnect A High bandwidth, low
] latency communication C—
A Industry standard)
modular design A Low TCO with unified
‘ ‘ memory APU package ‘ ‘
MCPU MGPU
emory emory =
(DRAM) (HBM) Unlfle(dH BI\KI/;:mory

APU programming model (HIP)

A GPU memory allocation on Device

A Explicit memory management between CPU & GPU
A

22

