
Transparent Asynchronous Compute Made Easy
With PETSc

Jacob Faibussowitsch
June 6, 2023



Your GPU Code Is Slow

GPUs are like a factory:

→ Big startup cost
→ Needs steady supply of work
→ Works best in bulk

Difficult to keep saturated for small jobs

→ Performance left on the table
→ You paid for the whole GPU, you should use the whole GPU



A Simple Example

1 PetscReal norm;
2

3 // Must copy result D2H and synchronize
4 VecNorm(x, NORM_2, &norm);
5 norm = 1.0 / norm;
6 // Must copy norm H2D and synchronize after
7 VecScale(x, norm);

This is a common scenario!

• Functions operate on, or produce scalar values
• Values piped to next GPU function after basic manipulation
• Results are immediate→ must synchronize GPU after each call

Ideally this is all done in a stream on the GPU...



A Simple Example

1 PetscReal norm;
2

3 // Must copy result D2H and synchronize
4 VecNorm(x, NORM_2, &norm);
5 norm = 1.0 / norm;
6 // Must copy norm H2D and synchronize after
7 VecScale(x, norm);

This is a common scenario!

• Functions operate on, or produce scalar values
• Values piped to next GPU function after basic manipulation
• Results are immediate→ must synchronize GPU after each call

Ideally this is all done in a stream on the GPU...



What Are GPU Streams?

typedef pthread_t gpu_stream_t;

Essentially threads, both the good and the bad

: Putting work “on” a stream→ launching a thread

: Efficient “communication” via recorded
events/semaphores

: Non-linear execution path, hard to grok

: Race condition hazards

: Deadlock hazards

Surely every vendor has agreed on a single implementation... right?



What Are GPU Streams?

typedef pthread_t gpu_stream_t;

Essentially threads, both the good and the bad

: Putting work “on” a stream→ launching a thread

: Efficient “communication” via recorded
events/semaphores

: Non-linear execution path, hard to grok

: Race condition hazards

: Deadlock hazards

Surely every vendor has agreed on a single implementation... right?



One Wrapper To Rule Them All

“Just use a
cudaStream_t”

- NVIDIA

“Just use a
hipStream_t”

- AMD

“Just use a
sycl::queue”

- Intel



One Wrapper To Rule Them All

PetscDeviceContext

1. Abstract away vendor-specific data structures
2. “Do the right thing” for missing functionality
3. Give high-level control over streams and
synchronization primitives



One Wrapper To Rule Them All

PetscDeviceContext

Bottom Line

Dictate how, when, and where, a particular GPU op runs



Petsc::ManagedMemory: The Solution To All Your Problems

1 Petsc::ManagedReal norm;
2 PetscDeviceContext dctx;
3

4 // Retrieve the current active device context (or create one)
5 PetscDeviceContextGetCurrentContext(&dctx);
6 // Store result in device memory (asynchronously!)
7 VecNormAsync(x, NORM_2, &norm, dctx);
8 // Evaluate the expression on device (asynchronously!)
9 norm = eval(dctx, 1.0 / norm);

10 // Use result (asynchronously!)
11 VecScaleAsync(x, norm, dctx);
12 // Wait for results to be ready
13 PetscDeviceContextSynchronize(dctx);

✓ Values computed in device memory
✓ Support for arbitrary expressions→ values stay on device
✓ Ability to await results→ functions may be asynchronous



Petsc::ManagedMemory: The Solution To All Your Problems

1 Petsc::ManagedReal norm;
2 PetscDeviceContext dctx;
3

4 // Retrieve the current active device context (or create one)
5 PetscDeviceContextGetCurrentContext(&dctx);
6 // Store result in device memory (asynchronously!)
7 VecNormAsync(x, NORM_2, &norm, dctx);
8 // Evaluate the expression on device (asynchronously!)
9 norm = eval(dctx, 1.0 / norm);

10 // Use result (asynchronously!)
11 VecScaleAsync(x, norm, dctx);
12 // Wait for results to be ready
13 PetscDeviceContextSynchronize(dctx);

✓ Values computed in device memory

✓ Support for arbitrary expressions→ values stay on device
✓ Ability to await results→ functions may be asynchronous



Petsc::ManagedMemory: The Solution To All Your Problems

1 Petsc::ManagedReal norm;
2 PetscDeviceContext dctx;
3

4 // Retrieve the current active device context (or create one)
5 PetscDeviceContextGetCurrentContext(&dctx);
6 // Store result in device memory (asynchronously!)
7 VecNormAsync(x, NORM_2, &norm, dctx);
8 // Evaluate the expression on device (asynchronously!)
9 norm = eval(dctx, 1.0 / norm);

10 // Use result (asynchronously!)
11 VecScaleAsync(x, norm, dctx);
12 // Wait for results to be ready
13 PetscDeviceContextSynchronize(dctx);

✓ Values computed in device memory
✓ Support for arbitrary expressions→ values stay on device

✓ Ability to await results→ functions may be asynchronous



Petsc::ManagedMemory: The Solution To All Your Problems

1 Petsc::ManagedReal norm;
2 PetscDeviceContext dctx;
3

4 // Retrieve the current active device context (or create one)
5 PetscDeviceContextGetCurrentContext(&dctx);
6 // Store result in device memory (asynchronously!)
7 VecNormAsync(x, NORM_2, &norm, dctx);
8 // Evaluate the expression on device (asynchronously!)
9 norm = eval(dctx, 1.0 / norm);

10 // Use result (asynchronously!)
11 VecScaleAsync(x, norm, dctx);
12 // Wait for results to be ready
13 PetscDeviceContextSynchronize(dctx);

✓ Values computed in device memory
✓ Support for arbitrary expressions→ values stay on device
✓ Ability to await results→ functions may be asynchronous



The Rubber Hits The Road

1 Petsc::ManagedReal norm;
2 PetscScalar *cpu_array;
3 PetscDeviceContext dctx_a, dctx_b, dctx_c;
4

5 // These are all *separate* streams
6 PetscDeviceContextGetCurrentContext(&dctx_a);
7 PetscDeviceContextDuplicate(dctx_a, &dctx_b);
8 PetscDeviceContextDuplicate(dctx_a, &dctx_c);
9 // Store result in device memory (asynchronously!)

10 VecNormAsync(x, NORM_2, &norm, dctx_a);
11 // Evaluate the expression on device (asynchronously!)
12 norm = eval(dctx_b, 1.0 / norm);
13 // Use result (asynchronously!)
14 VecScaleAsync(x, norm, dctx_c);
15 // Get results (...synchronously?)
16 VecGetArray(x, &cpu_array);



To Go Even Further Beyond

1 Petsc::ManagedReal norm;
2 PetscScalar *cpu_array;
3 PetscDeviceContext dctx_a, dctx_b, dctx_c;
4

5 // These are all *separate* streams
6 PetscDeviceContextGetCurrentContext(&dctx_a);
7 PetscDeviceContextDuplicate(dctx_a, &dctx_b);
8 PetscDeviceContextDuplicate(dctx_a, &dctx_c);
9 // Store result in device memory (asynchronously!)

10 VecNormAsync(x, NORM_2, &norm, dctx_a);
11 // Evaluate the expression on device (asynchronously!)
12 norm = eval(dctx_b, 1.0 / norm);
13 // Use result (asynchronously!)
14 VecScaleAsync(x, norm, dctx_c);
15 // Get results (synchronously!)
16 VecGetArray(x, &cpu_array);
17 // PetscDeviceContextSynchronize(dctx); ???

✓ Automatically serializes stream dependencies for you
✓ Even across ”regular” API !!!



To Go Even Further Beyond

1 Petsc::ManagedReal norm;
2 PetscScalar *cpu_array;
3 PetscDeviceContext dctx_a, dctx_b, dctx_c;
4

5 // These are all *separate* streams
6 PetscDeviceContextGetCurrentContext(&dctx_a);
7 PetscDeviceContextDuplicate(dctx_a, &dctx_b);
8 PetscDeviceContextDuplicate(dctx_a, &dctx_c);
9 // Store result in device memory (asynchronously!)

10 VecNormAsync(x, NORM_2, &norm, dctx_a);
11 // Evaluate the expression on device (asynchronously!)
12 norm = eval(dctx_b, 1.0 / norm);
13 // Use result (asynchronously!)
14 VecScaleAsync(x, norm, dctx_c);
15 // Get results (synchronously!)
16 VecGetArray(x, &cpu_array);
17 // PetscDeviceContextSynchronize(dctx); ???

✓ Automatically serializes stream dependencies for you
✓ Even across ”regular” API

!!!



To Go Even Further Beyond

1 Petsc::ManagedReal norm;
2 PetscScalar *cpu_array;
3 PetscDeviceContext dctx_a, dctx_b, dctx_c;
4

5 // These are all *separate* streams
6 PetscDeviceContextGetCurrentContext(&dctx_a);
7 PetscDeviceContextDuplicate(dctx_a, &dctx_b);
8 PetscDeviceContextDuplicate(dctx_a, &dctx_c);
9 // Store result in device memory (asynchronously!)

10 VecNormAsync(x, NORM_2, &norm, dctx_a);
11 // Evaluate the expression on device (asynchronously!)
12 norm = eval(dctx_b, 1.0 / norm);
13 // Use result (asynchronously!)
14 VecScaleAsync(x, norm, dctx_c);
15 // Get results (synchronously!)
16 VecGetArray(x, &cpu_array);
17 // PetscDeviceContextSynchronize(dctx); ???

✓ Automatically serializes stream dependencies for you
✓ Even across ”regular” API !!!



Cool... But How Does It Scale?

CG Benchmark:

• Run on ANL Polaris:
• GPU: NVIDIA A100
• CPU: AMD EPYC “Milan”

• Solve Laplace equation of varying size and density1

• 20 KSP iterations (for simplicity of comparison)
• Jacobi preconditioning
• 1 MPI Rank

1Cartesian product of 2D, 3D, with, and without finite difference stencil



Time To Solution

cg_main:
• -ksp_type cg on main branch
• Synchronous

cgasync:
• -ksp_type cgasync on exp. branch
• Fully Asynchronous



Flops

cg_main:
• -ksp_type cg on main branch
• Synchronous

cgasync:
• -ksp_type cgasync on exp. branch
• Fully Asynchronous



Time To Solution Ratio



Time To Solution Ratio



Mystery Solved?



Mystery Solved?



Conclusion

Key Takeaways:

✓ Faster across the board
✓ Much faster (∼ 1.8×) if latency bound
✓ Speedup diminishes as solve becomes “work bound”...

✓ ...but that assumes you cannot fill the time with other work!



Conclusion

Key Takeaways:

✓ Faster across the board
✓ Much faster (∼ 1.8×) if latency bound
✓ Speedup diminishes as solve becomes “work bound”...
✓ ...but that assumes you cannot fill the time with other work!



Future Work

✓ GMRES implementation (finishing touches)
✓ Automatic runtime kernel fusion

• Implemented for Vec, but benefits still under investigation...
• Needs tight integration with Mat to be truly useful

✓ Ability to cancel GPU work in-flight (“unlaunch” a kernel)

Thanks For Listening!

Check out the branch
jacobf/2022-11-28/petsc-managed-memorya

Any questions?
ahttps://gitlab.com/petsc/petsc/-/merge_requests/6178

https://gitlab.com/petsc/petsc/-/merge_requests/6178
https://gitlab.com/petsc/petsc/-/merge_requests/6178


Future Work

✓ GMRES implementation (finishing touches)
✓ Automatic runtime kernel fusion

• Implemented for Vec, but benefits still under investigation...
• Needs tight integration with Mat to be truly useful

✓ Ability to cancel GPU work in-flight (“unlaunch” a kernel)

Thanks For Listening!

Check out the branch
jacobf/2022-11-28/petsc-managed-memorya

Any questions?
ahttps://gitlab.com/petsc/petsc/-/merge_requests/6178

https://gitlab.com/petsc/petsc/-/merge_requests/6178
https://gitlab.com/petsc/petsc/-/merge_requests/6178

	Introduction
	The Good Stuff
	Scaling

