Transparent Asynchronous Compute Made Easy
With PETSc

Jacob Faibussowitsch
June 6, 2023

Your GPU Code Is

You hello_world<<<l, 1>>>() GPU

GPUs are like a factory:

— Big startup cost
— Needs steady supply of work
— Works best in bulk

Difficult to keep saturated for small jobs

— Performance left on the table
— You paid for the whole GPU, you should use the whole GPU

A Simple Example

1 PetscReal norm

2
s // Miust copy result D2H and synchroni ze
a VecNorm(x, NORM 2, &normn;

s norm= 1.0 / norm

e // Miust copy norm H2D and synchroni ze after
7 VecScal e(x, norm;

This is a common scenario!

+ Functions operate on, or produce scalar values
+ Values piped to next GPU function after basic manipulation
+ Results are immediate — must synchronize GPU after each call

A Simple Example

Pet scReal norm

-

/1 Must copy result D2H and synchroni ze
VecNor m(x, NORM 2, &nornj;

s norm= 1.0 / norm

/1 Must copy norm H2D and synchroni ze after
VecScal e(x, norn;

B W N

=]

<

This is a common scenario!

+ Functions operate on, or produce scalar values
+ Values piped to next GPU function after basic manipulation
+ Results are immediate — must synchronize GPU after each call

Ideally this is all done in a stream on the GPU...

What Are GPU Streams?

typedef pthread_t gpu_streamt;

Essentially threads, both the good and the bad

s)

+ Putting work “on” a stream — launching a thread

+ Efficient “communication” via recorded
events/semaphores

v Non-linear execution path, hard to grok
¢ Race condition hazards
y Deadlock hazards

What Are GPU Streams?

typedef pthread_t gpu_streamt;

Essentially threads, both the good and the bad

s)

+ Putting work “on” a stream — launching a thread

+ Efficient “communication” via recorded
events/semaphores

v Non-linear execution path, hard to grok
¢ Race condition hazards
y Deadlock hazards

Surely every vendor has agreed on a single implementation... right?

One Wrapper To Rule Them All

“Just use a “Just use a *Just use a
cudaStream_t” hipStream_t” sycl: :queue”

- NVIDIA - AMD - Intel

One Wrapper To Rule Them All

Pet scDevi ceCont ext

1. Abstract away vendor-specific data structures
2. “Do the right thing” for missing functionality

3. Give high-level control over streams and
synchronization primitives

One Wrapper To Rule Them All

Pet scDevi ceCont ext

Bottom Line

Dictate how, when, and where, a particular GPU op runs

Petsc::ManagedMemory: The Solution To All Your Problems

Pet sc: : ManagedReal norm
Pet scDevi ceCont ext dct x;

-

/'l Retrieve the current active device context (or create one)
Pet scDevi ceCont ext Get Cur r ent Cont ext (&dct x) ;

/1 Store result in device nmenory (asynchronously!)

VecNor mAsync(x, NORM 2, &norm dctx);

/'l Eval uate the expression on device (asynchronously!)
norm = eval (dctx, 1.0 / norm;

10 // Use result (asynchronously!)

11 VecScal eAsync(x, norm dctx);

12 // Wait for results to be ready

13 Pet scDevi ceCont ext Synchroni ze(dct x) ;

© W N o o b~ W N

Petsc::ManagedMemory: The Solution To All Your Problems

-

Pet sc: : ManagedReal norm
Pet scDevi ceCont ext dct x;

/'l Retrieve the current active device context (or create one)
Pet scDevi ceCont ext Get Cur r ent Cont ext (&dct x) ;

/1 Store result in device nmenory (asynchronously!)

VecNor mAsync(x, NORM 2, &norm dctx);

/'l Eval uate the expression on device (asynchronously!)

norm = eval (dctx, 1.0 / norm;

10 // Use result (asynchronously!)

11 VecScal eAsync(x, norm dctx);

12 // Wait for results to be ready

13 Pet scDevi ceCont ext Synchroni ze(dct x) ;

© ® N o s W N

v Values computed in device memory

Petsc::ManagedMemory: The Solution To All Your Problems

Pet sc: : ManagedReal norm
Pet scDevi ceCont ext dct x;

-

/'l Retrieve the current active device context (or create one)
Pet scDevi ceCont ext Get Cur r ent Cont ext (&dct x) ;

/1 Store result in device nmenory (asynchronously!)

VecNor mAsync(x, NORM 2, &norm dctx);

/'l Eval uate the expression on device (asynchronously!)

norm = eval (dctx, 1.0 / norn);

10 // Use result (asynchronously!)

11 VecScal eAsync(x, norm dctx);

12 // Wait for results to be ready

13 Pet scDevi ceCont ext Synchroni ze(dct x) ;

© W N o o b~ W N

v Values computed in device memory
v Support for arbitrary expressions — values stay on device

Petsc::ManagedMemory: The Solution To All Your Problems

Pet sc: : ManagedReal norm
Pet scDevi ceCont ext dct x;

-

/'l Retrieve the current active device context (or create one)
Pet scDevi ceCont ext Get Cur r ent Cont ext (&dct x) ;

/1 Store result in device nmenory (asynchronously!)

VecNor mAsync(x, NORM 2, &norm dctx);

/'l Eval uate the expression on device (asynchronously!)
norm = eval (dctx, 1.0 / norm;

10 // Use result (asynchronously!)

11 VecScal eAsync(x, norm dctx);

12 // Wait for results to be ready

13 Pet scDevi ceCont ext Synchroni ze(dct x) ;

© ® N o s W N

v Values computed in device memory
v Support for arbitrary expressions — values stay on device
v Ability to await results — functions may be asynchronous

The Rubber Hits The Road

S I R

© ® N o o

11

12

13

14

15

16

Pet sc: : ManagedReal norm
Pet scScal ar *cpu_array;
Pet scDevi ceContext dctx_a, dctx_b, dctx_c;

/'l These are all *separate* streans

Pet scDevi ceCont ext Get Cur r ent Cont ext (&dct x_a) ;

Pet scDevi ceCont ext Dupl i cat e(dct x_a, &dctx_b);

Pet scDevi ceCont ext Dupl i cate(dctx_a, &dctx_c);

/] Store result in device nenory (asynchronously!)
VecNor mAsync(x, NORM 2, &norm dctx_a);

/'l Eval uate the expression on device (asynchronously!)
norm = eval (dctx_b, 1.0 / norm;

/1 Use result (asynchronously!)

VecScal eAsync(x, norm dctx_c);

/] Get results (...synchronously?)

VecGet Array(x, &cpu_array);

To Go Even Further Beyond

N

[

© 0 N o o

10
11
12
13
14
15
16

17

Pet sc: : ManagedReal norm
Pet scScal ar *cpu_array;
Pet scDevi ceContext dctx_a, dctx_b, dctx_c;

/'l These are all *separate* streans

Pet scDevi ceCont ext Get Cur r ent Cont ext (&dct x_a) ;

Pet scDevi ceCont ext Dupl i cat e(dct x_a, &dctx_b);

Pet scDevi ceCont ext Dupl i cate(dctx_a, &dctx_c);

/] Store result in device nenory (asynchronously!)
VecNor mAsync(x, NORM 2, &norm dctx a);

/'l Eval uate the expression on device (asynchronously!)
norm = eval (dctx_b, 1.0 / norm;

/1 Use result (asynchronously!)

VecScal eAsync(x, norm dctx_c);

/] Get results (synchronously!)

VecGet Array(x, &cpu_array);

/'l Pet scDevi ceCont ext Synchroni ze(dctx); ???

To Go Even Further Beyond

N

[

© 0 N o o

10
11
12
13
14
15
16

17

Pet sc: : ManagedReal norm
Pet scScal ar *cpu_array;
Pet scDevi ceContext dctx_a, dctx_b, dctx_c;

/'l These are all *separate* streans

Pet scDevi ceCont ext Get Cur r ent Cont ext (&dct x_a) ;

Pet scDevi ceCont ext Dupl i cat e(dct x_a, &dctx_b);

Pet scDevi ceCont ext Dupl i cate(dctx_a, &dctx_c);

/] Store result in device nenory (asynchronously!)
VecNor mAsync(x, NORM 2, &norm dctx a);

/'l Eval uate the expression on device (asynchronously!)
norm = eval (dctx_b, 1.0 / norm;

/1 Use result (asynchronously!)

VecScal eAsync(x, norm dctx_c);

/] Get results (synchronously!)

VecGet Array(x, &cpu_array);

/'l Pet scDevi ceCont ext Synchroni ze(dctx); ???

v Automatically serializes stream dependencies for you
v Even across "regular” API

To Go Even Further Beyond

N

[

© 0 N o o

10
11
12
13
14
15
16

17

Pet sc: : ManagedReal norm
Pet scScal ar *cpu_array;
Pet scDevi ceContext dctx_a, dctx_b, dctx_c;

/'l These are all *separate* streans

Pet scDevi ceCont ext Get Cur r ent Cont ext (&dct x_a) ;

Pet scDevi ceCont ext Dupl i cat e(dct x_a, &dctx_b);

Pet scDevi ceCont ext Dupl i cate(dctx_a, &dctx_c);

/] Store result in device nenory (asynchronously!)
VecNor mAsync(x, NORM 2, &norm dctx a);

/'l Eval uate the expression on device (asynchronously!)
norm = eval (dctx_b, 1.0 / norm;

/1 Use result (asynchronously!)

VecScal eAsync(x, norm dctx_c);

/] Get results (synchronously!)

VecGet Array(x, &cpu_array);

/'l Pet scDevi ceCont ext Synchroni ze(dctx); ???

v Automatically serializes stream dependencies for you
v Even across "regular” API !!!

Cool... But How Does It Scale?

CG Benchmark:

« Run on ANL Polaris:

+ GPU: NVIDIA A100
+ CPU: AMD EPYC “Milan”

+ Solve Laplace equation of varying size and density!
* 20 KSP iterations (for simplicity of comparison)

+ Jacobi preconditioning

+ 1 MPI Rank

Icartesian product of 2D, 3D, with, and without fnite diference stencil

Time To Solution

TIME (S)

TIME TO SOLUTION VS NNZ

—— cg_main_dim_2fd_0 —— cg_main_dim_3,

fd_o

103

cg_mai n:

+ -ksp_type cg on nai n branch

+ Synchronous

104 10° 106 107 108

cgasync:
« -ksp_type cgasync on exp. branch

* Fully Asynchronous

FLOPS VS NNZ

—— cg_main_dim_2_fd 0 —— cg_main_dim_3_fd_0
N cgasync_dim_3_fd_0 +
1054 -~-
104
a
o
o
-
™
=10
'd
a
3
™
102
10t ==
10° 104 10° 10° 107 108
NNZ
cg_nain: cgasync:

+ -ksp_type cg on nai n branch

+ Synchronous

« -ksp_type cgasync on exp. branch

* Fully Asynchronous

Time To Solution Ratio

RATIO OF TIME-TO-SOLUTION VS NNZ

1.0
—+ cg_main_dim_2_fd0 —— cg_main_dim_3_fd 0
-~ cg_main_dim 2.fd1 -=+- cg_main_dim_3_fd_1
0.8
206 - o
i
=
z
[*)
2
=
204
o
o
02
0.0

103 104 10° 106 107 108
NNZ

Time To Solution Ratio

RATIO OF TIME-TO-SOLUTION VS NNZ

1.0
—+ cg_main_dim_2_fd0 —— cg_main_dim_3_fd 0
-~ cg_main_dim 2.fd1 -=+- cg_main_dim_3_fd_1
0.8
206 - o
i
=
z
[*)
2
=
204
go.
o
02
0.0

103 104 10° 106 107 108
NNZ

Mystery Solved?

+15ms +20ms +25ms +30ms +35ms +40ms +45ms. +50ms +55ms

(RSPSalva (45 048 el)

DCuSync [37.887 ms]

Mystery Solved?

+15ms +20ms +25ms +30ms +35ms +40ms +45ms. +50ms +55ms

KSPSolve (45046 me]

DCuSync [37.887 ms]

+15ms +20ms +25ms +30ms +35ms [39.53ms] +45ms +50ms +55ms

-l - [} I -ln l. \- - Il H-\(&) -‘ -d D | . H-m - .l G I\-.H-I.H-‘HI. Il
' .
-l -H- I -n - \- - - H- D), @I [-d MﬂMuﬂlwsnarsaspMVIInad balancing_kernel ||| §&5) || @& |
Begins: 0.038678:
I * |Ends: 0.0402129s (+1.535 ms) . .
arid: <<<27219, 1, 1>>>
block: <<<512, 1, 1>>>
Launch Typs: Recuiar —
| static Shared Memory: 16,384 bytes
Dynamic Shared Memory: 0 bytes (
Registers Per Thread: 40
S Local Memory Per Thread: 0 bytes —
0 S| Local Memory Total: 56,623,104 bytes | —
Shared Memory executed: 65,536 bytes
Shared Memory Bank Size: 4 B
Theoretical occupancy: 100 %
1 Launched from thread: 1592617
Latency: ¢20.448 ms
Correlation ID: 1095
Stream: sub_stream_0

Conclusion

Key Takeaways:

v' Faster across the board
v Much faster (~ 1.8x) if latency bound
v Speedup diminishes as solve becomes “work bound”...

Conclusion

Key Takeaways:

v' Faster across the board
v Much faster (~ 1.8x) if latency bound
v Speedup diminishes as solve becomes “work bound”...

v/ ..but that assumes you cannot fill the time with other work!

Future Work

v GMRES implementation (finishing touches)
v~ Automatic runtime kernel fusion

+ Implemented for Vec, but benefits still under investigation...
+ Needs tight integration with Mat to be truly useful

v Ability to cancel GPU work in-flight (“unlaunch” a kernel)

https://gitlab.com/petsc/petsc/-/merge_requests/6178
https://gitlab.com/petsc/petsc/-/merge_requests/6178

Future Work

v GMRES implementation (finishing touches)
v~ Automatic runtime kernel fusion

+ Implemented for Vec, but benefits still under investigation...
+ Needs tight integration with Mat to be truly useful

v Ability to cancel GPU work in-flight (“unlaunch” a kernel)

Thanks For Listening!

Check out the branch
j acobf/2022- 11- 28/ pet sc- managed- nenor y?

Any questions?

ahttps://gitlab. con petsc/petsc/-/nerge_requests/ 6178

https://gitlab.com/petsc/petsc/-/merge_requests/6178
https://gitlab.com/petsc/petsc/-/merge_requests/6178

	Introduction
	The Good Stuff
	Scaling

