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Flow and Reactive Transport code in porous media

Funded by US DOE
Open-source and community-driven code
Written in modern Fortran; employs PETSc framework
 Runs in HPC, workstations, and laptops
« Jaguar at ORNL with 262k cores on 3.3B unknowns
Numerical methods
« Backward Euler temporal discretization
* Finite volume spatial discretization
Flow: multiphase, CO, two-phase, black-oil, Richards,

thermal-hydrologic models

Transport: multicomponent aqueous complexation, sorption,
precipitation dissolution

METIS/PARMETIS libraries for unstructured grids

HDF5 and ASCII files for input and output
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Geologic Disposal Safety Assessment (GDSA) Framework
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Background

« Purpose:

open-source software toolkit for probabilistic performance
assessment of deep geologic repositories for nuclear waste

« Large-scale engineered system

Hypothetical Nuclear Waste repository in host rocks such as salt,
argillite, crystalline, and alluvium.
Heat-generating high-level nuclear wastes
Possibly water-boiling peak temperature

1 million-year simulations

Hypothetical domain spans in kilometers
Excavation, shaft access, ramp access,
Engineered barriers (bentonite),

Natural barriers, multiple soil types, and
constitutive relations




Observation and Motivation

a0  GDSA Alluvial
T Unsaturated Zone (UZ)
reference case
I - 105k grid cells
» Miscible Nonisothermal

* Heat-generating spent
nuclear waste packages

* Newton-Raphson
(Newton)

« Simulations ended with
non-convergence failure

« Higher peak temperature
simulations failed sooner

« Cannot handle
discontinuous phase state
changes
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A Potential Solution

Literature Search

A successful numerical trust-region simulation by Li (2015) for specific capillary

pressures with kinks and relative permeability functions in two-phase porous media

model. Time step size 10 days (NT) vs 1M days (NTR)
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Li, B., Tchelepi, H.A., et al., 2015. Nonlinear analysis of multiphase transport in porous media in the presence of viscous, buoyancy, and capillary forces,

Jour. of Comp. Phy. DOI:10.1016/j.jcp.2015.04.057

DR



Newton trust-region dogleg Cauchy nonlinear solver

Iter #2

Cauchy,”’

<+— NTRDC

< -- Cauchy
Newton
Iter #1

/
/

K

Ilter #2

Iter #3
— |ter #4

O |Initial
% Minimum

Dogleg:
(1-t)-C+T-N

-

Red contour is high and blue contour is low representing residual space. X, is the initial guess and
golden cross is the solution. Cauchy evaluates the solution in steepest descent direction.
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Accommodating PVS in Advanced Nonlinear Solver

~ . Force Newton lterations _~ . Hold Inner Iterations

This is my original idea to accommodate PVS for trust-region. Same treatment is needed for any advanced
nonlinear solvers. The first number is outer iteration and the second number is inner iteration.
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Numerical Experiment

Alluvium Unsaturated Zone Model
* Fully-refined (7.2M unknowns), refined (313k),
uniform (190k) testing domains

» Refinement controls peak temperature of the
domain

« Same heat source different volumes

y
]
Do 250 300 350 400 450 ) 550 ) 650 700 750 800 850 900
X Axis (m)

Time: 10.0 years

Temperature (C)
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Numerical Experiment

Fully refined Model and heat source

« 5m long waste package, engineered barrier,
damaged rock zone, host rock

* Number of fuel assemblies from pressurized water
reactor (PWR)
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Results

Nonlinear Solver Computation Time

Fu | Iy'refl ned Slm u |at|ons 6 5\|\/,|G ECPC 7200k unknowns (144 cor_e;?m(
» Fully-Refined domain with 12PWR heat source <
+ Reaches 140 C peak temperature in the domain 2 6.25M -
* 100,000-year simulation 2 -
 Experiences 2.2M phase state changes £ 6MH > P o
- Newton fails with nonconvergence g > £
- Fails with 24PWR and 37PWR as expected = 5.75m 1 (/Mo < s
e Trust-region methods (NTX) perform similarly 2 27 | 00 495K
- NTR and NTRDC with FNI and Hll 5.5M - N IS

NT
NTR HII
NTRDC HII

Park et al. (2022), Newton trust-region methods with primary variable switching for simulating high temperature multiphase flow,

June 4, 2023 Advances in Water Resources, DOI:10.1016/j.advwatres.2022.104285
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Results

Fully-refined Simulations
« 12PWR, 24PWR, 37PWR heat source

* 100,000-year simulation
« Experiences 2.2M phase state changes for 12PWR
« Experiences 4.3M phase state changes for 24PWR
« Experiences 9.4M phase state changes for 37PWR
* More nonlinear iterations for 37PWR
* Nonlinear iterations caused by phase state changes

 Shows the robustness of NTR solver

June 4, 2023 Advances in Water Resources, DOI:10.1016/j.advwatres.2022.104285
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Strong Scalability

Strong Scaling Strong Scaling
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« Parallel scalability is very important to run large-scale simulations
» Wall-clock time should decrease in proportion to the number of cores
* In-node strong scaling effect (note 1cpn when memory channel bottleneck is avoided)
» Cross-node strong scaling effect
« 36 cores with Intel Xeon Gold 6240 Processor 2.60 GHz, 24.75 MB cache in two sockets with 6
memory channels

Park et al. (2022), Newton trust-region methods with primary variable switching for simulating high temperature multiphase flow, . |
June 4, 2023 Advances in Water Resources, DOI:10.1016/j.advwatres.2022.104285 12



Richards unsaturated flow

3D Model Test Cases

100-year intrusion lithostatic
Newton’s method (NT)

Trust Region Dogleg (NTRDC)
00-year intrusion hydrostatic
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Isothermal Immiscible Flow

Overall Computation Time
BCGS-ILU Mid Case 64 cores
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10,000-year sim. 64 cores, 920k unknowns, about 14,000 unknowns per core
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Park et al. (2021), Linear and nonlinear solvers for simulating multiphase flow within large-scale engineered subsurface systems,

Nonlinear Iterations

Linear Iterations
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Figure 3.3: Far view of the cropped|:|simulatiou model. The domain spans approximately 30 km in the
x-, 28km in the y-, and lkm in the z-direction. The repository is the finely gridded region near the center of

the model.

Advances in Water Resources, DOI: 10.1016/j.advwatres.2021.104029
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Voronoi cell domain/CQO, injection

100-year sim. 144 cores, about 10,000 unknowns per core (LaForce, 2022)
Newton solver did not finish. NTRDC results in the table.

Realization mesh 1 mesh 2 mesh 3
Grid cells 763,607 763,769 762,763
Simulation time (hr) 24.7 25.1 28.2

Fig. 19 Isometric view of mesh 3. Top: surface mesh of the model. Bottom: Reservoir volumes colored
by the material IDs of each layer. The Phosphoria caprock is shown in gray, Weber Sandstone injection
interval is blue and crystalline basement is red.

J 4. 2023 LaForce et al. (2022), Voronoi meshing to accurately capture geology in subsurface simulations, Mathematical Geoscience manuscript, @ | 15
une 4, DOI: 10.1007/511004-022-10025-x



Reactive Transport Simulation

Injection/Leaching sites

Flow Exit Boundary

Retardation
material
with

lower
permeability

Host porous medium

42x25x28 84x50x56

Table 1. Characteristics of the media

Host Low perm. Total Conc. T1* T2 T3 T4 TS
Porosity 6 0.25 0.5 N I I I
. Low perm. 0.0 -2.0 0.0 2.0 10.0
Hydraulic cond. K (m/yr) [E¥2vi 1.0E-5
Injection @ Oyrs 0.3 0.3 0.3 0.0
Site (S) Conc. (mol/m3) 1.0 10.0 -
Leaching @ 1500y 0.0 -2.0 0.0 2.0

Dispersion alL (m) 1.0E-2 6.0E-2
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Table 2. Chemical concentration of the initial and boundary cond.

x=2.1m

168x100x112

secondary species (aqueous)

Cl= —X2
K=10"1

C2= X2+ X3
K=1

C3= —X2+ X4
K=1

Ci= —4X2+ X3+3X4
K=0.1

C5= 4X2+3X3+ X4
K =10%

surface complexation (sorbed)
7701 v 2V 1+ vV2 1 ©
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Results

Time: 780 years
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Questions?

Thank you for listening
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