

Heeho D. Park

6/5/2023, PETSc Annual Meeting 2023, Chicago, IL

PFLOTRAN

Core Developers

Climate Sciences Department
Earth Sciences Division
Lawrence Berkeley National Laboratory
Email: bandre at Ibl dot gov

Gautam Bisht

Earth Systems Analysis & Modeling

Pacific Northwest National Laboratory

Email: gautam dot bisht at pnnl dot gov

Hydrogeochemical Dynamics Team Earth and Aquatic Sciences Group Environmental Sciences Division Oak Ridge National Laboratory Email: collierno at orni dot gov.

Jennifer Frederick
Applied Systems Analysis and Research
Sandia National Laboratories
Email: jmfrede at sandia dot gov

Glenn Hammond
Environmental Subsurface Science Group
Pacific Northwest National Laboratory
Email: glenn dot hammond at onnl dot gov

Environmental Subsurface Science Group Pacific Northwest National Laboratory Email: piyoosh dot jaysaval at pnnl dot gov

Computational Earth Science Group
Earth and Environmental Sciences Division
Los Alamos National Laboratory
Email: satkarra at land dot gov

Jitendra Kumar
Terrestrial Systems Modeling Group
Environmental Sciences Division
Climate Change Science Institute
Oak Ridge National Laboratory
Email: ikumar at climatemodeline dot or

Rosie Leone Applied Systems Analysis and Research Sandia National Laboratories Email: rleone at sandia dot gov

Peter Lichtner

OFM Research

Email: peter dot lichtner at gmail dot com

Richard Tran Mills

Mathematics and Computer Science
Division

Argonne National Laboratory

Email: rtmills at anl dot gov

Michael Nole
Applied Systems Research and Analysis
Sandia National Laboratories
Email: mnole at sandia dot gov

OpenGoSim Email: paolo dot orsini at gmail dot com

Heeho Park

Applied Systems Research and Analysis
Sandia National Laboratories
Email: heepark at sandia dot gov

Moise Rousseau

Research Institute on Mines and
Environment
Polytechnique Montreal

Fmail: rousseau dot moise at smail dot com

Flow and Reactive Transport code in porous media

- Funded by US DOE
- Open-source and community-driven code
- Written in modern Fortran; employs PETSc framework
 - Runs in HPC, workstations, and laptops
 - Jaguar at ORNL with 262k cores on 3.3B unknowns
- Numerical methods
 - Backward Euler temporal discretization
 - Finite volume spatial discretization
- Flow: multiphase, CO₂ two-phase, black-oil, Richards, thermal-hydrologic models
- Transport: multicomponent aqueous complexation, sorption, precipitation dissolution
- METIS/PARMETIS libraries for unstructured grids
- HDF5 and ASCII files for input and output

Geologic Disposal Safety Assessment (GDSA) Framework

Background

- Purpose:
 - open-source software toolkit for probabilistic performance assessment of deep geologic repositories for nuclear waste
- Large-scale engineered system
 - Hypothetical Nuclear Waste repository in host rocks such as salt, argillite, crystalline, and alluvium.
 - Heat-generating high-level nuclear wastes
 - Possibly water-boiling peak temperature
 - 1 million-year simulations
 - Hypothetical domain spans in kilometers
 - Excavation, shaft access, ramp access, Engineered barriers (bentonite), Natural barriers, multiple soil types, and constitutive relations

Observation and Motivation

- GDSA Alluvial Unsaturated Zone (UZ) reference case
- 105k grid cells
- Miscible Nonisothermal
- Heat-generating spent nuclear waste packages
- Newton-Raphson (Newton)
- Simulations ended with non-convergence failure
- Higher peak temperature simulations failed sooner
- Cannot handle discontinuous phase state changes

A Potential Solution

Literature Search

A successful numerical trust-region simulation by Li (2015) for specific capillary pressures with kinks and relative permeability functions in two-phase porous media model. Time step size 10 days (NT) vs 1M days (NTR)

Newton trust-region dogleg Cauchy nonlinear solver

Red contour is high and blue contour is low representing residual space. x_0 is the initial guess and golden cross is the solution. Cauchy evaluates the solution in steepest descent direction.

Accommodating PVS in Advanced Nonlinear Solver

This is my original idea to accommodate PVS for trust-region. Same treatment is needed for any advanced nonlinear solvers. The first number is outer iteration and the second number is inner iteration.

Numerical Experiment

Alluvium Unsaturated Zone Model

- Fully-refined (7.2M unknowns), refined (313k), uniform (190k) testing domains
- Refinement controls peak temperature of the domain
 - Same heat source different volumes

Numerical Experiment

Fully refined Model and heat source

- 5m long waste package, engineered barrier, damaged rock zone, host rock
- Number of fuel assemblies from pressurized water reactor (PWR)

Results

Fully-refined Simulations

- Fully-Refined domain with 12PWR heat source
 - Reaches 140 C peak temperature in the domain
- 100,000-year simulation
 - Experiences 2.2M phase state changes
- Newton fails with nonconvergence
 - Fails with 24PWR and 37PWR as expected
- Trust-region methods (NTX) perform similarly
 - NTR and NTRDC with FNI and HII

Results

Fully-refined Simulations

- 12PWR, 24PWR, 37PWR heat source
- 100,000-year simulation
 - Experiences 2.2M phase state changes for 12PWR
 - Experiences 4.3M phase state changes for 24PWR
 - Experiences 9.4M phase state changes for 37PWR
- More nonlinear iterations for 37PWR
 - Nonlinear iterations caused by phase state changes
- Shows the robustness of NTR solver

Strong Scalability

- Parallel scalability is very important to run large-scale simulations
 - Wall-clock time should decrease in proportion to the number of cores
- In-node strong scaling effect (note 1cpn when memory channel bottleneck is avoided)
- Cross-node strong scaling effect
- 36 cores with Intel Xeon Gold 6240 Processor 2.60 GHz, 24.75 MB cache in two sockets with 6 memory channels

Richards unsaturated flow

3D Model Test Cases	Compute Time [Min]	Nonlinear iter.	Linear iter.	
100-year intrusion lithostatic				
Newton's method (NT)	68.6	8019	3026014	
Trust Region Dogleg (NTRDC)	1.77	482	29975	
100-year intrusion hydrostatic				
NT	32.2	1931	1363055	
NTRDC	1.77	412	31386	
350-year intrusion lithostatic				
NT	75.7	3457	3919579	
NTRDC	3.42	621	60134	
350-year intrusion hydrostatic				
NT	25.6	1812	1191325	
NTRDC	2.85	510	51534	

Isothermal Immiscible Flow

Figure 3.3: Far view of the cropped simulation model. The domain spans approximately 30 km in the x-, 28km in the y-, and 1km in the z-direction. The repository is the finely gridded region near the center of the model.

10,000-year sim. 64 cores, 920k unknowns, about 14,000 unknowns per core

Voronoi cell domain/CO₂ injection

100-year sim. 144 cores, about 10,000 unknowns per core (LaForce, 2022) Newton solver did not finish. NTRDC results in the table.

Realization	mesh 1	mesh 2	mesh 3
Grid cells	763,607	763,769	762,763
Simulation time (hr)	24.7	25.1	28.2

Fig. 19 Isometric view of mesh 3. Top: surface mesh of the model. Bottom: Reservoir volumes colored by the material IDs of each layer. The Phosphoria caprock is shown in gray, Weber Sandstone injection interval is blue and crystalline basement is red.

Reactive Transport Simulation

Table 1. Characteristics of the media					
	Host	Low perm.			
Porosity θ	0.25	0.5			
Hydraulic cond. K (m/yr)	1.0E-2	1.0E-5			
Site (S) Conc. (mol/m³)	1.0	10.0			
Dispersion αL (m)	1.0E-2	6.0E-2			

Table 2. Chemical concentration of the initial and boundary cond.							
Total Conc.	T1*	T2	T3	T4	TS		
Host	0.0	-2.0	0.0	2.0	1.0		
Low perm.	0.0	-2.0	0.0	2.0	10.0		
Injection @ Oyrs	0.3	0.3	0.3	0.0			
Leaching @ 1500y	0.0	-2.0	0.0	2.0			

secondary species (aqueous)

$$C1 \rightleftharpoons -X2$$
 $K = 10^{-12}$
 $C2 \rightleftharpoons X2 + X3$
 $K = 1$
 $C3 \rightleftharpoons -X2 + X4$
 $K = 1$
 $C4 \rightleftharpoons -4X2 + X3 + 3X4$
 $K = 0.1$
 $C5 \rightleftharpoons 4X2 + 3X3 + X4$
 $K = 10^{35}$
surface complexation (sorbed)

 $CC1 \rightarrow 2V2 + V2 + C$

Results

Questions?

Thank you for listening