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XGCm is a new gyrokinetic particle-in-cell (PIC) code
for fusion plasma simulations:

Ø Mesh-centric approach to handle particle operations;
Ø Distributed unstructured mesh;
Ø Physical algorithms from the well-established XGC code;
Ø Omega_h: unstructured mesh management (Kokkos

based);
Ø PUMIPic: particle management (Omega_h based);
Ø PETSc: linear equation solver;
Ø All operations performed on GPU (currently working on

Nvidia GPUs: Summit, Perlmutter, and RPI’s AiMOS;
porting to AMD and Intel GPU underway);

Ø Aimed at exascale fusion plasma simulations.
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Demonstration of the particle trajectories at several
time steps, and the electrostatic potential results for
the Cyclone ITG test case 5 of Burckel et. al. (2010).
Particle trajectories are colored by time step number,
and each poloidal plane is colored by the electrostatic
potential.

Overview
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qThe Vlasov equation and gyrokinetic particle-in-cell method
qUnstructured partitioned mesh using Omega_h
qParticle management using PUMIPic
q Solving gyrokinetic Poisson equation using PETSc
qCode validation: cyclone base case with circular geometry
q Ion temperature gradient in DIII-D geometry
qCode performance and scaling
q Future work

Outline



The Vlasov equation and gyrokinetic particle-in-cell method 
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Ø Starting from the Boltzmann equation
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Lorentz force on charged particles
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Self-consistent electric field

𝑬:	electric	field,	𝑩: magnetic field

Vlasov Equation
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Ø Particle-in-cell method numerically solves
the Vlasov equation;

Ø Monte Carlo particle method;
Ø Each particle represents a large amount of

(identical) real charged ions/electrons;
Ø Main operations in the PIC method:

q Particle push;
q Particle charge deposition;
q Field solve;
q Field to particle interpolation.

Ø Gyrokinetic particle-in-cell method:
q Particle guiding-center position, instead of

actual particle position is simulated.

𝜕𝑓$
𝜕𝑡

+ 𝒗$ &
𝜕𝑓$
𝜕𝒙

+
𝑞$
𝑚$

(𝑬 + 𝒗×𝑩) &
𝜕𝑓$
𝜕𝒗

= 0

∇ & 𝑬 =
𝜌
𝜀
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[1] A. Fasoli, S. Brunner, W. A. Cooper, J. P. Graves, P. Ricci, O. Sauter and L. Villard, Nature Physics, vol 12, pp 411–423, 2016.

Example magnetic field and particle trajectories[1].

The Vlasov equation and gyrokinetic particle-in-cell method 



Three levels of mesh partitions:
Ø Toroidal partition: partition particles into different MPI ranks

along the torus direction;
Ø Poloidal partition: in each poloidal plane, mesh is partitioned

into different MPI ranks according to the flux curves; particles
are associated with each triangle element of the distributed
mesh;

Ø Solver partition: a (potentially) different mesh partition in each
poloidal plane for solving the gyrokinetic Poisson equation.

As a first step
solver partition poloidal partition
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Unstructured partitioned mesh: Omega_h



[1] Gerrett Diamond, Cameron W.Smith, Chonglin Zhang, Eisung Yoon, and Mark S. Shephard, PUMIPic: A mesh-based approach to unstructured mesh Particle-In-
Cell on GPUs, Journal of Parallel and Distributed Computing, Vol 157, pp 1-12 (2021).

The storage of particles in a set of mesh elements (left) in a CSR (middle) and two SCS
(right) with no sorting and with sorting. Arrows on each structure show the
continuous layout of memory.

Ø A distributed mesh approach for PIC that can scale both the particles and mesh and is performant.
Ø Particles accessed through mesh to support faster data access and mesh/particle operations;
Ø Mesh distribution based on core parts and buffer parts to ensure on-process movement of particles in a

particle push operation;
Ø Mesh infrastructure to support all major PIC operations on GPU: particle, particle-mesh, mesh, mesh-mesh

operations;

PICpart generated for the core part A
using 4 layers of breadth-first traversal.

Path of a particle through a 2D
triangular mesh using edge
adjacencies

Particle management in distributed unstructured mesh: PUMIPic

7



[1] S. Ku, C. S. Chang, R. Hager, R. M. Churchill, G. R. Tynan, I. Cziegler, M. Greenwald, J. Hughes, S. E. Parker, M. F. Adams, E. D'Azevedo, and P. Worley , A fast low-
to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1, Physics of Plasmas 25, 056107 (2018)

Equations being solved (long wavelength limit)[1]

Field (right-hand-side and solution vectors) 
storage:

Ø If solve on GPU, data stays on GPU memory:
§ GPU Read/write:   Omegah::Write<o::Real>
§ GPU Read only:     Omegah::Reals

Ø If solve on CPU, data copied to CPU memory:
§ CPU Read/write: Omegah::HostWrite<o::Real>
§ CPU Read only: Omegah::HostRead<o::Real>
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Essentially, the terms (1� ⇢2ir2
?) is dropped from Eq.22.

1.4 Gyrokinetic Poisson equations corresponding to equilib-

rium and perturbation mode

Using the toroidal average operation, the linearized gyrokinetic Poisson equation,
Eq.24, could be solved by separating it into two parts, the so-called:

• n = 0 case;

• and n 6= 0 case.

The n = 0 case is,
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and the n 6= 0 case is,
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The toroidal average operation h. . . i, as its name suggests, is the average over the
toroidal direction of a field variable, as defined below,

hgi = hg(r, z)i = 1R
d�

Z
g(r, z,�)d�, (27)

here g(r, z,�) is a function defined on the configuration space (r, z,�), with (r, z) the
poloidal components, and � the toroidal direction. Also in the above equation, Eq.26,
we have,

g = hgi+ �g, (28)

this should not be confused with the flux-surface average operation.
Essentially, the linearized Poisson equation is separated into the equilibrium mode

(equilibrium flux-function Maxwellian-Boltzmann distribution part, or the 00 mode in
XGC code notation), and the turbulence mode (or, the fluctuation part).

Note: need to look at this further as how the above equations are derived, it is still
not completely clear how the toroidal average and flux-surface average are reconciled
with each other; need to look a the adiabatic electron situation; also need to visit this
later in the numerical implementation part for the correspondence.
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Guiding center density

Solving electrostatic gyrokinetic Poisson equation using PETSc
The solution process:
Ø After particle push, obtain right-hand-side 

vector (charge density) resulting from charge 
scatter;

Ø Copy right-hand-side vector from Omega_h to 
PETSc;

Ø Solve either on GPU or CPU with PETSc;
q Linear matrix is assembled once on GPU.

Ø After PETSc solve, copy solution vector from 
PETSc to Omega_h; 

Ø Calculate electric field from solution vector and 
perform particle push;

Ø Repeat the above process.



1. Before solve, copy right-hand-side vector to PETSc 2. Call PETSc to solve the linear equation

If solve on GPU If solve on CPU

If Solve on GPU, specify PETSc matrix and vector as
Ø -dm_vec_type cuda
Ø -dm_mat_type aijcusparse

Solving electrostatic gyrokinetic Poisson equation using PETSc

3. After solve, copy solution vector to XGCm
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Solving electrostatic gyrokinetic Poisson equation using PETSc

Solver partition
Ø Currently used the same partition as the poloidal partition;
Ø Easiest;
Ø More importantly, big time cost to support a different solver partition.

KSPSolve time comparison (in unit of seconds) 

# of mesh partitions # of mesh triangles per rank 
(in thousands)

Solve on GPU Solve on CPU

1 2400 8.181 247.93

6 400 10.187 51.552

12 200 9.6197 22.622

24 100 10.839

48 50 14.418

96 25 11.876

Ø -ksp_type cg
Ø -pc_type gamg

Ø -mg_levels_ksp_type chebyshev
Ø -mg_levels_pc_type jacobi 10



[1] G. Merlo, J. Dominski, A. Bhattacharjee, C. S. Chang, F. Jenko, S. Ku, E. Lanti, and S. Parker, Cross-verification of the global gyrokinetic codes GENE and XGC, 
Physics of Plasmas 25, 062308 (2018) 
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Background density and temperature profile,
𝜓 is normalized poloidal magnetic flux as in
the left figure[1].

R0/LT=6.91

R0/Ln=2.22

Code validation: cyclone base case with circular geometry

Simulation setup
Ø Mesh size: 590,143 mesh triangles, 296,046 mesh vertices;
Ø 8 poloidal planes/partitions, or 8 GPUs;
Ø 20 million particles per GPU;
Ø An initially perturbed density field is used, corresponding to 

a single toroidal mode number n=24, with Gaussian shape 
in both the radial and poloidal directions;

Ø dt = 3.91e-7 second;
Ø Simulation was run for 200 time steps.

Coarse mesh is shown here for visualization
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Contour plot of turbulent electrostatic potential on one 
poloidal plane at time step 200.

Growth rate, 𝛾, of the turbulent electrostatic potential over time.
Here, 𝛾 = !"#$(& ' )

!'
, with 𝜑(𝑡) is the square-averaged turbulent 

electrostatic potential at time 𝑡,  log() is the logarithm function, 
and !!' is the time derivative.

Code validation: cyclone base case with circular geometry



Ø Adiabatic electron;
Ø DIII-D equilibrium 096333;
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Resulting turbulent electrostatic potential on one poloidal
plane over time; the result show here is the mean-square-
averaged potential over all mesh vertices.

Simulation details
Ø 16 poloidal planes; each with 20 million particles;
Ø Each poloidal plane has 400,276 triangle elements;
Ø Simulations were run for 1000 ion time steps;
Ø dt = 3.13e-7 second

Simulation mesh, coarse mesh is 
shown here for visualization

Initial background density and temperature
profile, 𝜓 is normalized poloidal magnetic
flux

Ion Temperature Gradient (ITG) with DIII-D geometry
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ITG with DIII-D geometry: turbulent electrostatic potential

t = 0 t = 250 t = 500 t = 1000

Contour plot of turbulent electrostatic potential on one poloidal plane at different time steps 
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Ø Summit is hosted at Oak Ridge
Leadership Computing Facility (OLCF).
Currently the 5th fastest computer in
the world;

Ø Weak scaling: each GPU does same
amount of work, evaluate performance
as number of GPUs increase (increased
problem size);

Ø Used 256 to 4,608 Summit computing
nodes (1,536 to 27,648 GPUs);

Ø Up to full Summit’s computing power;
Ø Straight line means perfect scaling.

[1] C. Zhang, G. Diamond, C. W. Smith, M. S. Shephard, in review, Computer Physics Communications, 2023.
[2] C. Zhang, G. Diamond, C. W. Smith, M. S. Shephard, 64th Annual Meeting of the APS Division of Plasma Physics , October 17-21, 2022, 
Spokane, WA.

Total simulation time cost, and time cost of major components of the 
code. Problem size scales with the computing nodes used[1, 2].

XGCm performance: weak scaling on OLCF Summit
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q Need 20-30 million particles/GPU to be efficient on Summit (Nvidia V100) ;
q 50-80 million particles/GPU on Perlmutter (Nvidia A100).

Cyclone base case with circular geometry
Ø Same case as previous weak scaling study;
Ø 8 poloidal planes, or 8 GPUs used.

Most of these GPU kernels are memory bound

XGCm performance: particle operations GPU kernels time cost



XGCm performance: simple Nvidia Nsight Compute analysis
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Charge scatter

Ion push PerlmutterPerlmutter

Summit

q Charge scatter kernel is heavily memory bound;
q Ion push kernel is less memory bound.
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Gyroaveraged electric field calculation
Ø Mesh field operation, from field A to field B;
Ø Operating on each mesh vertex of field A;
Ø Calculating field B defined on each mesh vertex;
Ø Field A and B have different components per mesh 

vertex.

q Simple test using Cabana's array-of-structs-
of-arrays data structure, AoSoA;

q Roughly a 36% reduction in kernel time.

Omega_h field

Cabana AoSoA field

XGCm performance: simple Nvidia Nsight Compute analysis
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q Mesh operations
Ø Explore different unstructured mesh field storage on GPU;
Ø meshFields library being developed at RPI: https://github.com/SCOREC/meshFields.

§ Use the Cabana AoSoA data structure;
§ Better data locality and performance.

q Particle operations
Ø Particle push: ion and electron have dramatically different mass and hence speed;
Ø Explore the performance of different particle data structures on different species.

§ Sell-C-sigma, Cabana AoSoA, DPS.

q Better use of PETSc
Ø Integrate latest PETSc release with XGCm (currently using v3.16.6);
Ø Currently only used Cuda, explore using Kokkos, HIP, and SYCL with different hardwares;
Ø Best practice using PETSc on different GPUs vs on CPU.

Future work

https://github.com/SCOREC/meshFields
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