XGCm: An Unstructured Mesh Gyrokinetic Particle-in-cell Code for Exascale Fusion Plasma Simulations

Chonglin Zhang, Gerrett Diamond, Cameron W. Smith, Mark S. Shephard Scientific Computation Research Center

Rensselaer Polytechnic Institute

Overview

XGCm is a new gyrokinetic particle-in-cell (PIC) code

 for fusion plasma simulations:$>$ Mesh-centric approach to handle particle operations;
> Distributed unstructured mesh;
> Physical algorithms from the well-established XGC code;
> Omega_h: unstructured mesh management (Kokkos based);
> PUMIPic: particle management (Omega_h based);
> PETSc: linear equation solver;
> All operations performed on GPU (currently working on Nvidia GPUs: Summit, Perlmutter, and RPI's AiMOS; porting to AMD and Intel GPU underway);
$>$ Aimed at exascale fusion plasma simulations.

Demonstration of the particle trajectories at several time steps, and the electrostatic potential results for the Cyclone ITG test case 5 of Burckel et. al. (2010). Particle trajectories are colored by time step number, and each poloidal plane is colored by the electrostatic potential.

The Vlasov equation and gyrokinetic particle-in-cell method
\square Unstructured partitioned mesh using Omega_h
\square Particle management using PUMIPic
\square Solving gyrokinetic Poisson equation using PETSc
\square Code validation: cyclone base case with circular geometry
Ion temperature gradient in DIII-D geometry
\square Code performance and scaling
\square Future work

The Vlasov equation and gyrokinetic particle-in-cell method

> Starting from the Boltzmann equation

$$
\frac{\partial f}{\partial t}+\boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{x}}+\boldsymbol{a} \cdot \frac{\partial f}{\partial v}=\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}
$$

Vlasov Equation

$$
\frac{\partial f_{s}}{\partial t^{\prime}}+\boldsymbol{v}_{s} \cdot \frac{\partial f_{s}}{\partial \boldsymbol{x}}+\frac{q_{s}}{m_{s}}(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}) \cdot \frac{\partial f_{s}}{\partial v}=0
$$

Long-range Coulomb interaction
\square Collisionless Boltzmann equation
$\frac{\partial f}{\partial t}+v \cdot \frac{\partial f}{\partial \boldsymbol{x}}+\boldsymbol{a} \cdot \frac{\partial f}{\partial v}=0$

Self-consistent electric field $\quad \nabla \cdot \boldsymbol{E}=\frac{\rho}{\varepsilon}$
Lorentz force on charged particles
$\boldsymbol{F}=q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})$, or $\boldsymbol{a}=\frac{q}{m}(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})$,
E : electric field, B : magnetic field

The Vlasov equation and gyrokinetic particle-in-cell method

$>$ Particle-in-cell method numerically solves a the Vlasov equation;
> Monte Carlo particle method;
> Each particle represents a large amount of (identical) real charged ions/electrons;
> Main operations in the PIC method:
\square Particle push;
\square Particle charge deposition;
\square Field solve;
\square Field to particle interpolation.
> Gyrokinetic particle-in-cell method:
\square Particle guiding-center position, instead of actual particle position is simulated.

Unstructured partitioned mesh: Omega_h

Three levels of mesh partitions:
> Toroidal partition: partition particles into different MPI ranks along the torus direction;
> Poloidal partition: in each poloidal plane, mesh is partitioned into different MPI ranks according to the flux curves; particles are associated with each triangle element of the distributed mesh;
> Solver partition: a (potentially) different mesh partition in each poloidal plane for solving the gyrokinetic Poisson equation.

As a first step solver partition

Particle management in distributed unstructured mesh: PUMIPic

$>$ A distributed mesh approach for PIC that can scale both the particles and mesh and is performant.
$>$ Particles accessed through mesh to support faster data access and mesh/particle operations;
$>$ Mesh distribution based on core parts and buffer parts to ensure on-process movement of particles in a particle push operation;
> Mesh infrastructure to support all major PIC operations on GPU: particle, particle-mesh, mesh, mesh-mesh operations;

PICpart generated for the core part A using 4 layers of breadth-first traversal.

Mesh \& Particles

Path of a particle through a 2D triangular mesh using edge adjacencies

The storage of particles in a set of mesh elements (left) in a CSR (middle) and two SCS (right) with no sorting and with sorting. Arrows on each structure show the continuous layout of memory.
[1] Gerrett Diamond, Cameron W.Smith, Chonglin Zhang, Eisung Yoon, and Mark S. Shephard, PUMIPic: A mesh-based approach to unstructured mesh Particle-InCell on GPUs, Journal of Parallel and Distributed Computing, Vol 157, pp 1-12 (2021).

Solving electrostatic gyrokinetic Poisson equation using PETSc

Equations being solved (long wavelength limit) ${ }^{[1]}$ The solution process:

$$
-\nabla_{\perp} \cdot \frac{n_{i} m}{e B^{2}} \nabla \sqrt{\Phi}+n_{0} \frac{\delta \Phi}{T_{e}}=\left(\bar{n}_{i}-\delta n_{e}\right)
$$

Guiding center density $\quad \bar{n}_{i}=n_{i, 0}+\delta \bar{n}_{i}=n_{0}+\delta \bar{n}_{i}$

$$
\bar{n}_{i}=\frac{1}{2 \pi} \int f_{i}(\mathbf{X}, \mu, u) \delta\left(\mathbf{X}-x+\vec{\rho}_{i}\right) d \mathbf{X} d \mu d \alpha
$$

Field (right-hand-side and solution vectors) storage:
> If solve on GPU, data stays on GPU memory:
" GPU Read/write: Omegah::Write<o::Real>

- GPU Read only: Omegah::Reals
> If solve on CPU, data copied to CPU memory:
- CPU Read/write: Omegah::HostWrite<o::Real>
- CPU Read only: Omegah::HostRead<o::Real>
> After particle push, obtain right-hand-side vector (charge density) resulting from charge scatter;
$>$ Copy right-hand-side vector from Omega_h to PETSc;
> Solve either on GPU or CPU with PETSc; Linear matrix is assembled once on GPU.
> After PETSc solve, copy solution vector from PETSc to Omega_h;
> Calculate electric field from solution vector and perform particle push;
$>$ Repeat the above process.

Solving electrostatic gyrokinetic Poisson equation using PETSc

1915 // copy xgcm field into petsc vector

```
#ifdef XGCM_GPU_SOLVE
```

 ierr \(=\) VecCUDAGetArrayWrite(bloc, \&bwrite); CHKERRQ(ierr);
 assert(xgc_vec.size() == simmesh->nverts());
 Vec bloc;
 PetscErrorCode ierr = DMGetLocalVector(dm, \&bloc); CHKERRQ(ierr);
 PetscScalar *bwrite;
 // handle GPU or CPU solve
 const auto p2lv = partVtx_to_locVec;
 auto set_petsc_vec = OMEGA_H_LAMBDA(const o::LO vtx) \{
 const auto vecIdx = p2lv[vtx];
 if (vecIdx >= 0) \{
 bwrite[vecIdx] = xgc_vec[vtx];
 \}
 If solve on GPU
 \};
 o::parallel_for(simmesh->nverts(), set_petsc_vec, "set_petsc_vec");
 ierr \(=\) VecCUDARestoreArrayWrite(bloc, \&bwrite); CHKERRQ(ierr);
 template<class Device>
 PetscErrorCode Poisson<Device>: : copyVec_xgcm_to_petsc(o: Reals\& xgc_vec,
 Vec petsc_vec) \{

2. Call PETSc to solve the linear equation
 2029 ierr $=\operatorname{KSPSolve}(k s p$, b, u); CHKERRQ(ierr);
 2030
 ierr $=$ KSPGetSolution(ksp, \&u) ; CHKERRQ(ierr);

3. After solve, copy solution vector to XGCm

2036 // scatter solution vector u to xgc field

2037 ierr = copyVec_petsc_to_xgcm(u, pot); CHKERRQ(ierr);

```
    #else
    0::HostRead<0::L0> p2lv(partVtx_to_locVec);
    0::HostRead<o::Real> xgc_vec_host(xgc_vec);
    ierr = VecGetArrayWrite(bloc, &bwrite); CHKERRQ(ierr);
    for (int vtx = 0; vtx < xgc_vec.size(); vtx++) {
        const o::LO vecIdx = p2lv[vtx];
            if (vecIdx >= 0) {
            bwrite[vecIdx] = xgc_vec_host[vtx]; If SO|VE On CPU
        }
        }
            ierr = VecRestoreArrayWrite(bloc, &bwrite); CHKERRQ(ierr);
#endif
```

ierr = DMLocalToGlobal(dm, bloc, INSERT_VALUES, petsc_vec); CHKERRQ(ierr); ierr = DMRestoreLocalVector(dm, \&bloc); CHKERRQ(ierr);
If Solve on GPU, specify PETSc matrix and vector as
> -dm_vec_type cuda
> -dm_mat_type aijcusparse

PetscFunctionReturn(0); \}

Solving electrostatic gyrokinetic Poisson equation using PETSc

Solver partition

$>$ Currently used the same partition as the poloidal partition;
> Easiest;
$>$ More importantly, big time cost to support a different solver partition.
KSPSolve time comparison (in unit of seconds)

\# of mesh partitions	\# of mesh triangles per rank (in thousands)	Solve on GPU	Solve on CPU
1	2400	8.181	247.93
6	400	10.187	51.552
12	200	9.6197	22.622
24	100	10.839	
48	50	14.418	
96	25	11.876	

```
> -ksp_type cg
    > -mg_levels_ksp_type chebyshev
> -pc_type gamg
> -mg_levels_pc_type jacobi
```


Code validation: cyclone base case with circular geometry

Simulation setup

> Mesh size: 590,143 mesh triangles, 296,046 mesh vertices;
> 8 poloidal planes/partitions, or 8 GPUs;
> 20 million particles per GPU;
$>$ An initially perturbed density field is used, corresponding to a single toroidal mode number $n=24$, with Gaussian shape in both the radial and poloidal directions;

Background density and temperature profile, ψ is normalized poloidal magnetic flux as in the left figure ${ }^{[1]}$.

Coarse mesh is shown here for visualization

[1] G. Merlo, J. Dominski, A. Bhattacharjee, C. S. Chang, F. Jenko, S. Ku, E. Lanti, and S. Parker, Cross-verification of the global gyrokinetic codes GENE and XGC, Physics of Plasmas 25, 062308 (2018)

Code validation: cyclone base case with circular geometry

Growth rate, γ, of the turbulent electrostatic potential over time. Here, $\gamma=\frac{\operatorname{dlog}(\varphi(t))}{d t}$, with $\varphi(t)$ is the square-averaged turbulent electrostatic potential at time $t, \log ()$ is the logarithm function, and $\frac{d}{d t}$ is the time derivative.

Contour plot of turbulent electrostatic potential on one poloidal plane at time step 200.

Ion Temperature Gradient (ITG) with DIII-D geometry

Adiabatic electron;

> DIII-D equilibrium 096333;

Initial background density and temperature profile, ψ is normalized poloidal magnetic flux

Simulation details

> 16 poloidal planes; each with 20 million particles;
> Each poloidal plane has 400,276 triangle elements;

- Simulations were run for 1000 ion time steps;
$>d t=3.13 \mathrm{e}-7$ second

Resulting turbulent electrostatic potential on one poloidal plane over time; the result show here is the mean-squareaveraged potential over all mesh vertices.

ITG with DIII-D geometry: turbulent electrostatic potential

Contour plot of turbulent electrostatic potential on one poloidal plane at different time steps

XGCm performance: weak scaling on OLCF Summit

Summit is hosted at Oak Ridge Leadership Computing Facility (OLCF). Currently the 5th fastest computer in the world;
> Weak scaling: each GPU does same amount of work, evaluate performance as number of GPUs increase (increased problem size);
$>$ Used 256 to 4,608 Summit computing nodes (1,536 to 27,648 GPUs);
> Up to full Summit's computing power;
$>$ Straight line means perfect scaling.

Total simulation time cost, and time cost of major components of the code. Problem size scales with the computing nodes used ${ }^{[1,2]}$.
[1] C. Zhang, G. Diamond, C. W. Smith, M. S. Shephard, in review, Computer Physics Communications, 2023.
[2] C. Zhang, G. Diamond, C. W. Smith, M. S. Shephard, 64th Annual Meeting of the APS Division of Plasma Physics , October 17-21, 2022, Spokane, WA.

XGCm performance: particle operations GPU kernels time cost

Cyclone base case with circular geometry
> Same case as previous weak scaling study;
> 8 poloidal planes, or 8 GPUs used.

590,143 mesh elements, 8 poloidal planes, 8 GPUs

Number of particles per GPU (million)

Most of these GPU kernels are memory bound

Need 20-30 million particles/GPU to be efficient on Summit (Nvidia V100) ;
\square 50-80 million particles/GPU on Perlmutter (Nvidia A100).

XGCm performance: simple Nvidia Nsight Compute analysis

\square Charge scatter kernel is heavily memory bound; \square lon push kernel is less memory bound.

XGCm performance: simple Nvidia Nsight Compute analysis

Gyroaveraged electric field calculation

> Mesh field operation, from field A to field B;
$>$ Operating on each mesh vertex of field A;
$>$ Calculating field B defined on each mesh vertex;
$>$ Field A and B have different components per mesh vertex.

Simple test using Cabana's array-of-structs-of-arrays data structure, AoSoA;
\square Roughly a 36\% reduction in kernel time.

```
using DataTypes = Cabana::MemberTypes<double[NRP1*NCOMPS],double[NRP1*NCOMPS]>;
const int VectorLength = 32;
using MemorySpace = Kokkos::CudaSpace;
using ExecutionSpace = Kokkos::Cuda;
using DeviceType = Kokkos::Device<ExecutionSpace, MemorySpace>;
Cabana::AoSoA<DataTypes, DeviceType, VectorLength> aosoa("my_aosoa", mesh->nverts());
auto eff_major_slice = Cabana::slice<0>(aosoa);
auto eff_minor_slice = Cabana::slice<1>(aosoa);
```


Future work

\square Mesh operations
> Explore different unstructured mesh field storage on GPU;
> meshFields library being developed at RPI: https://github.com/SCOREC/meshFields.

- Use the Cabana AoSoA data structure;
- Better data locality and performance.
\square Particle operations
$>$ Particle push: ion and electron have dramatically different mass and hence speed;
$>$ Explore the performance of different particle data structures on different species.
- Sell-C-sigma, Cabana AoSoA, DPS.
\square Better use of PETSc
> Integrate latest PETSc release with XGCm (currently using v3.16.6);
> Currently only used Cuda, explore using Kokkos, HIP, and SYCL with different hardwares;
> Best practice using PETSc on different GPUs vs on CPU.
- This research is supported by the DOE SciDAC program through grant DESC0018275 (Unstructured Mesh Technologies for Fusion Simulation Codes).
- This work is carried out in collaboration with:
- FASTMath SciDAC Institute;
- High-Fidelity Boundary Plasma Simulation SciDAC Partnership;
- COPA: ECP Co-Design Center for Particle Applications.

