XGCm: An Unstructured Mesh Gyrokinetic
Particle-in-cell Code for Exascale Fusion
Plasma Simulations

Chonglin Zhang, Gerrett Diamond, Cameron W. Smith, Mark S. Shephard
Scientific Computation Research Center
Rensselaer Polytechnic Institute

oV TEC
ey
g g
2 =5
kA S
LIS,
18240 2

XGCm is a new gyrokinetic particle-in-cell (PIC) code
for fusion plasma simulations:

» Mesh-centric approach to handle particle operations;
» Distributed unstructured mesh;
» Physical algorithms from the well-established XGC code;

» Omega_h: unstructured mesh management (Kokkos
based);

» PUMIPic: particle management (Omega_h based);
» PETSc: linear equation solver;

» All operations performed on GPU (currently working on
Nvidia GPUs: Summit, Perlmutter, and RPI’'s AiMOS;
porting to AMD and Intel GPU underway);

» Aimed at exascale fusion plasma simulations.

Electrostatic potential (volts)

-4.0e-10 -3e-10 -2e-10 -le-10 0 le-10
| | It 1

- ' —

Demonstration of the particle trajectories at several
time steps, and the electrostatic potential results for
the Cyclone ITG test case 5 of Burckel et. al. (2010).
Particle trajectories are colored by time step number,
and each poloidal plane is colored by the electrostatic
potential.

1 The Vlasov equation and gyrokinetic particle-in-cell method
1 Unstructured partitioned mesh using Omega_h

[Particle management using PUMIPic

[Solving gyrokinetic Poisson equation using PETSc

] Code validation: cyclone base case with circular geometry
J lon temperature gradient in DIlI-D geometry

J Code performance and scaling

J Future work

The Vlasov equation and gyrokinetic particle-in-cell method

» Starting from the Boltzmann equation

of of . of of

~tv-—L+a
ot 0x v (at)cou Vlasov Equation

fs 0fs afs
2 = (E + vxB —
Vs o+ S(+) =0

 Long-range Coulomb

interaction
[Collisionless Boltzmann 0
eguation Self-consistent electric field V:-E = —
£
Lorentz force on charged particles
g+ 0f ﬁ_o F=q(E+v><B),ora=%(E+v><B),

ot ax ov E :electric field, B: magnetic field

The Vlasov equation and gyrokinetic particle-in-cell method

» Particle-in-cell method numerically solves a

the Vlasov equation; B field line =
. . Helical torsion (rotational
> Monte CarIO partlde methOdl transform) of B field lines is
. - essential to confine particles
» Each particle represents a large amount of 2N

(identical) real charged ions/electrons;

Magnetic surface

» Main operations in the PIC method: \ Frapped
) . " particle
 Particle push; Lareror W
1 Particle charge deposition; kaditep] T% Passing
] Particle _/// particle
d Field SO|V€; trajectory
4 Field to particle interpolation. UJs UJs Ys | vy
> Gyrokinetic particle-in-cell method: "¢ Example magnetic field particle trajectorjes!t.
A Particle guiding-center position, instead of ~ Self-consistent electric field | V- E =
actual particle position is simulated. €

[1] A. Fasoli, S. Brunner, W. A. Cooper, J. P. Graves, P. Ricci, O. Sauter and L. Villard, Nature Physics, vol 12, pp 411-423, 2016.

Unstructured partitioned mesh: Omega_h

Three levels of mesh partitions:

» Toroidal partition: partition particles into different MPI ranks
along the torus direction;

» Poloidal partition: in each poloidal plane, mesh is partitioned
into different MPI ranks according to the flux curves; particles
are associated with each triangle element of the distributed
mesh;

» Solver partition: a (potentially) different mesh partition in each
poloidal plane for solving the gyrokinetic Poisson equation.

Electrostatic potential (volts)
0 le-10

-3e-10 -2e-10 -le-10
[L 1 [

As a first step

solver partition S polc

Particle management in distributed unstructured mesh: PUMIPic

A distributed mesh approach for PIC that can scale both the particles and mesh and is performant.

Particles accessed through mesh to support faster data access and mesh/particle operations;

Mesh distribution based on core parts and buffer parts to ensure on-process movement of particles in a
particle push operation;

Mesh infrastructure to support all major PIC operations on GPU: particle, particle-mesh, mesh, mesh-mesh
operations;

VYV VY

Mesh & Particles CSR Sell-4-1(no sorting) Sell-4-12 (sorted)

PICpart generated for the core part A :j;:;:lzrpar?:slﬁ ttrs?lrgh Sdzgz The storage of particles in a set of mesh elements (left) in a CSR (middle) and two SCS

using 4 layers of breadth-first traversal. adjacencies (right) with no sorting and with sorting. Arrows on each structure show the
continuous layout of memory.

[1] Gerrett Diamond, Cameron W.Smith, Chonglin Zhang, Eisung Yoon, and Mark S. Shephard, PUMIPic: A mesh-based approach to unstructured mesh Particle-In-
Cell on GPUs, Journal of Parallel and Distributed Computing, Vol 157, pp 1-12 (2021).

7

Solving electrostatic gyrokinetic Poisson equation using PETSc

Equations being solved (long wavelength limit)2l The solution process:

» After particle push, obtain right-hand-side
n;m 0P _ _ _
—V_- NP VI[P i o7 = (7 — One) vector (charge density) resulting from charge
N |) scatter;
Guiding center density 7; = nio +0m; = no + 0m, > Copy right-hand-side vector from Omega_h to
1= 5 [FX)X~ 2+)aXduda PETSC;

» Solve either on GPU or CPU with PETSc;

Field (right-hand-side and solution vectors) O Linear matrix is assembled once on GPU.

storage: » After PETSc solve, copy solution vector from

> If solve on GPU, data stays on GPU memory: PETSc to Omega_h;
= GPU Read/write: Omegah::Write<o::Real> » Calculate electric field from solution vector and
= GPUReadonly: Omegah::Reals perform particle push;

» If solve on CPU, data copied to CPU memory: » Repeat the above process.

= CPU Read/write: Omegah::HostWrite<o::Real>
= CPU Read only: Omegah::HostRead<o::Real>

[1] S. Ku, C. S. Chang, R. Hager, R. M. Churchill, G. R. Tynan, I. Cziegler, M. Greenwald, J. Hughes, S. E. Parker, M. F. Adams, E. D'Azevedo, and P. Worley, A fast low-
to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1, Physics of Plasmas 25, 056107 (2018) 3

Solving electrostatic gyrokinetic Poisson equation using PETSc

// copy xgcm field into petsc vector

template<class Device> 2. Call PETSc to solve the linear equation

PetscErrorCode Poisson<Device>: jcopyVec_xgcm_to_petsc(o::Reals& xgc_vec, ierr KSPSolve(ksp)| b, |u); CHKERRQ(ierr);
Vec petsc_vec) { ierr = KSPGetSolution(ksp, | &u)|; CHKERRQ(ierr);

assert(xgc_vec.size() == simmesh->nverts());
Vec bloc; 3. After solve, copy solution vector to XGCm
PetscErrorCode ierr = DMGetLocalVector(dm, &bloc); CHKERRQ(ierr);

// scatter solution vector u to xgc field
PetscScalar *bwrite;

ierr = copyVec_petsc_to_xgcm(u, |pot); CHKERRQ(ierr);

// handle GPU or CPU solve
#ifdef XGCM_GPU_SOLVE

ierr = VecCUDAGetArrayWrite(bloc, &bwrite); CHKERRQ(ierr);
const auto p2lv = partVtx_to_locVec;
auto set_petsc_vec = OMEGA_H_LAMBDA(const o0::L0 vtx) {

const auto vecIdx = p2lv[vtx];

if (vecIdx >= 0) {

bwrite[vecIdx] = xgc_vec[vtx];

} If solve on GPU

| H

#else
0::HostRead<o::L0> p2lv(partVtx_to_locVec);
0::HostRead<o::Real> xgc_vec_host(xgc_vec);
ierr = VecGetArrayWrite(bloc, &bwrite); CHKERRQ(ierr);

for (int vtx = 0; vtx < xgc_vec.size(); vitx++) {

const 0::L0 vecIdx = p2lv[vtx];
if (vecIdx >= 0) {

bwrite[vecIdx] = xgc_vec_host[vtx]; If SOIVe on CPU

o::parallel_for(simmesh—>nverts(), set_petsc_vec, "set_petsc_vec");
ierr = VecCUDARestoreArrayWrite(bloc, &bwrite); CHKERRQ(ierr);

}
ierr = VecRestoreArrayWrite(bloc, &bwrite); CHKERRQ(ierr);
#endif

)) ierr = DMLocalToGlobal(dm, bloc, INSERT_VALUES, petsc_vec); CHKERRQ(ierr);
If Solve on GPU, Sp@ley PETSc matrix and vector as ierr = DMRestoreLocalVector(dm, &bloc); CHKERRQ(ierr);
> -dm_vec_type cuda PetscFunctionReturn(0);

» -dm_mat_type aijcusparse b

Solving electrostatic gyrokinetic Poisson equation using PETSc

Solver partition

» Currently used the same partition as the poloidal partition;
> Easiest;

» More importantly, big time cost to support a different solver partition.

KSPSolve time comparison (in unit of seconds)

of mesh partitions # of mesh triangles per rank Solve on GPU Solve on CPU
(in thousands)

1)‘

2400 8.181 247.93
6 400 10.187 51.552
12 200 9.6197 22.622
24 100 10.839
48 50 14.418
96 25 11.876
» -ksp_type cg » -mg_levels_ksp_type chebyshev

> -pc_type gamg » -mg_levels_pc_type jacobi 10

Code validation: cyclone base case with circular geometry

lel9

497 Ro/LT=691

mulation setup
Mesh size: 590,143 mesh triangles, 296,046 mesh vertices;
8 poloidal planes/partitions, or 8 GPUs;
20 million particles per GPU;
An initially perturbed density field is used, corresponding to
e a single toroidal mode number n=24, with Gaussian shape

VVVYVYYVYWY

y
in both the radial and poloidal directions;
< 2] Ro/L,=2.22 » dt =3.91e-7 second;
()
~ L] L[] L] A
L 2400 » Simulation was run for 200 time steps. e
SIS
2200
2 SRR DO
S < NN/ v S YAl OOV
g SRRSO
= 2o N ST v
SDEREEROI KIS
A A IOSISTNOCENSIN RIS
0.0 0'2 0'4 0'6 0'8 1.0 EEii%ﬁEgggEEﬁ‘%iﬁgEgEggaiaEasaigﬁgggeg%g%ggsgigzgg
' ' ' ' ' ' AVAVAVAYAVAVAS P NN v VeV v vs AV
v > <Ay % Oay, AVaVE
A A S AVAVA O vy AV
: , RPEERRSEROAN]
Background density and temperature profile, %{é@g’%ﬁhﬁ'g%%aﬁhﬂ""
)) : : . : e 9>
1 is normalized poloidal magnetic flux as in Coarse mesh is shown here for visualization

the left figurell.

[1] G. Merlo, J. Dominski, A. Bhattacharjee, C. S. Chang, F. Jenko, S. Ku, E. Lanti, and S. Parker, Cross-verification of the global gyrokinetic codes GENE and XGC,
Physics of Plasmas 25, 062308 (2018) "

Code validation: cyclone base case with circular geometry

Turbulence growth rate

—

109 ——- XGCm
—— XGC1

0 -
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Time (ms) -

-1.5e- o a-A -5e- ? 5e-9 191-8 1.5e-8 2el-8 2.Ae|-08

Growth rate, y, of the turbulent electrostatic potential over time.
dl t . .

Here,y = %m, with @ (t) is the square-averaged turbulent

electrostatic potential at time ¢, log() is the logarithm function,

d . i L.
and — is the time derivative.
dt 12

Contour plot of turbulent electrostatic potential on one
poloidal plane at time step 200.

lon Temperature Gradient (ITG) with DIII-D geometry

» Adiabatic electron;
» DIII-D equilibrium 096333;

1000

©
w
o

Temperature (eV)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

y
lel9
1.06 A
—~ 1.04 -
m
: 1.02 A
-~
>
4
‘= 1.004
[
]
a 0.98 1
0.96 A
0.0 0.2 0.4 0.6 0.8 1.0
v

Initial background density and temperature
profile, ¥ is normalized poloidal magnetic

flux

N\

Qe s
ank g s

'y Skl

Simulation details

YV VYV

Simulation mesh, coarse mesh is

shown here for visualization

16 poloidal planes; each with 20 million particles;
Each poloidal plane has 400,276 triangle elements;
Simulations were run for 1000 ion time steps;

dt = 3.13e-7 second

1077 E
] == XGCm ’
108 ' //
1079] .
1010 ’

10711 — /’

_ 1 e
10 12-; 2

electrostatic potential
\

10—13é /

- -

10_14 - T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Time (ms)

Resulting turbulent electrostatic potential on one poloidal
plane over time; the result show here is the mean-square-
averaged potential over all mesh vertices.

13

ITG with DIII-D geometry: turbulent electrostatic potential

=
2
[
>
2
5
=
€
9

Potential (volts)
Potential (volts)
Potential (volts)

Contour plot of turbulent electrostatic potential on one poloidal plane at different time steps

14

XGCm performance: weak scaling on OLCF Summit

» Summit is hosted at Oak Ridge
Leadership Computing Facility (OLCF).
Currently the 5th fastest computer in
the world;

» Weak scaling: each GPU does same
amount of work, evaluate performance
as number of GPUs increase (increased
problem size);

» Used 256 to 4,608 Summit computing
nodes (1,536 to 27,648 GPUs);

» Up to full Summit’s computing power;

» Straight line means perfect scaling.

Number of particles (billion)
0 100 200 300 400 500 600 700

=
o
1

Particle migration
Poisson solver

Particle search

Particle structure rebuild
Electric field calculation
lon push physics

lon charge scatter
Other operations

o
(0]
1

Normalized time
= >

©
[N

0.0 -
0 1000 2000 3000 4000 5000

Number of nodes

Total simulation time cost, and time cost of major components of the
code. Problem size scales with the computing nodes used!?: 2,

[1] C. Zhang, G. Diamond, C. W. Smith, M. S. Shephard, in review, Computer Physics Communications, 2023.
[2] C. Zhang, G. Diamond, C. W. Smith, M. S. Shephard, 64th Annual Meeting of the APS Division of Plasma Physics , October 17-21, 2022,

Spokane, WA.

15

XGCm performance: particle operations GPU kernels time cost

Cyclone base case with circular geometry

> Same case as previous weak scaling study; Most of these GPU kernels are memory bound
» 8 poloidal planes, or 8 GPUs used.

’G)\ - 1

= —— Particle migration & 2% 10

) —— Particle search \cu/

[102] —— Particle structure rebuild S

ru 1 —— lon push physics £ 10!

8 —— lon charge scatter 8]

| -

v o 6x10° /

o) g~

+ +

0 " 4x10°

o o)

> \ Y 35100

v)

£ 1o £

= % 5 10 15 20 25 30 2 20 40 60 80 100
Number of particles per GPU (million) Number of particles per GPU (million)

590,143 mesh elements, 8 poloidal planes, 8 GPUs 590,143 mesh elements, 8 poloidal planes, 8 GPUs

J Need 20-30 million particles/GPU to be efficient on Summit (Nvidia V100) ;

(J 50-80 million particles/GPU on Perlmutter (Nvidia A100). i

XGCm performance: simple Nvidia Nsight Compute analysis

GPU Throughput

GPU Throughput Compute (SM) [%]

Compute (SM) [%] »
Memory [%
Memory [%] 50.0

Speed Of Light (SOL) [%]
00 . ! ; 400 50.0

Speed Of Light (SOL) [%]

Charge scatter

Performance [FLOP/s]

Performance [FLOP/s]
(1=1e+12)

lon push

Arithmetic Intensity [FLOP/byte]

Arithmetic Intensity [FLOP/byte] GPU Throughput

Compute (SM) [%]

Memory [%]

0.0 400 50.0
Speed Of Light (SOL) [%]

(J Charge scatter kernel is heavily memory bound;
 lon push kernel is less memory bound.

)
3

=)

H
=
8
5
£
&
o

10
Arithmetic Intensity [FLOP/byte]

17

XGCm performance: simple Nvidia Nsight Compute analysis

Gyroaveraged electric field calculation

» Mesh field operation, from field A to field B;

» Operating on each mesh vertex of field A;

» Calculating field B defined on each mesh vertex;

» Field A and B have different components per mesh
vertex.

B Cabana AoSoA field
D m——

1 10
Arithmetic Intensity [FLOP/byte]

. . ' using DataTypes = Cabana::MemberTypes<double [NRP1xNCOMPS],double [NRP1xNCOMPS]>;
4 Simple test using Cabana's array-of-structs- “ "= "= " T

of-arrays data structure, AoSoA; using MemorySpace = Kokkos: :CudaSpace;
i i i ing E tionS = Kokkos: :Cuda;
(d Roughly a 36% reduction in kernel time. using ExecutionSpace = Kokkos::Cuda

using DeviceType = Kokkos::Device<ExecutionSpace, MemorySpace>;

Cabana: :AoSoA<DataTypes, DeviceType, VectorLength> aosoa('"my_aosoa", mesh->nverts());
auto eff_major_slice = Cabana::slice<@>(aosoa);
auto eff_minor_slice = Cabana::slice<l>(aosoa);

18

(J Mesh operations

» Explore different unstructured mesh field storage on GPU;
» meshFields library being developed at RPI: https://github.com/SCOREC/meshFields.

] Particle operations

» Particle push: ion and electron have dramatically different mass and hence speed;
» Explore the performance of different particle data structures on different species.

] Better use of PETSc

> Integrate latest PETSc release with XGCm (currently using);
» Currently only used , explore using , HIP, and with different hardwares;
> Best practice using PETSc on different VS on

19

https://github.com/SCOREC/meshFields

Acknowledgement

* This research is supported by the DOE SciDAC program through grant DE-
SC0018275 (Unstructured Mesh Technologies for Fusion Simulation Codes).
* This work is carried out in collaboration with:

* FASTMath SciDAC Institute;
* High-Fidelity Boundary Plasma Simulation SciDAC Partnership;
* COPA: ECP Co-Design Center for Particle Applications.

20

