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Motivation
• Multiphase flows are frequently encountered in industry and nature.

• The equations governing these flows may involve:
▶ volume fraction and source term gradients
▶ property discontinuities
▶ multiple sets of velocities
▶ etc.

• Current algorithms for multiphase flows are typically based on single phase flows.
▶ They lack efficiency and robustness for multiphase flows.

• Most flows occur in complex geometries, therefore a collocated variable arrangement is more natural (in
a finite volume framework).
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Introduction
Incompressible Navier-Stokes equations

∇ · u = 0

ρ

[
∂u

∂t
+ ∇ · (u ⊗ u)

]
= −∇p + ∇ · τ + s

• The majority of finite-volume algorithms for incompressible flows are based
on a segregated solver approach:

1. Estimate velocities with momentum equation with guessed pressure, volume
fractions, etc.

2. Correct velocity field with continuity equation through pressure.
→ Requires to solve a Poisson equation.

3. Update volume fractions, source terms, gradients, etc.
4. Make sure phases are sufficiently coupled.
5. Go back to 1.

▷ This requires underrelaxation.
▷ There is no guarantee for a solution.
▷ Difficulties arise with large source terms.

Solve for Velocity fields

with "guessed" pressure

and "guessed" vfrac and

"guessed" source terms

U U1 2
**

Solve for Pressure

or Pressure correction

to satisfy continuity using

U*
P U''

Is momentum

satisfied sufficiently?

NO

Update source terms,

solve for volume fractions,

adjust phase coupling.

Is momentum still

satisfied sufficiently?

YES

NO

YES
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Introduction

• Strategies for coupled solving (instead of segregated):

▷ Accepting a zero on the diagonal of the linearized matrix.
→ Requires a fancy solver.

▷ Artificial compressibility.
→ Difficult with two phases, volume fractions and source terms.

▷ Including pressure dependency in the continuity equation.
→ Requires a different approach to the discretisation.
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Staggered vs. collocated discretisation

• A staggered variable storage mitigates pressure velocity decoupling.
Perot (2000), Wenneker et al (2003)

▷ The natural discretisation of the pressure gradient directly
drives the velocity.
→ This provides a “natural” coupling between pressure and

velocity.
▷ Very compact stencil for pressure.
▷ Preferred configuration for Cartesian grids.

→ Used by most research codes.
▷ For complex geometries . . . not so simple!

u u u

v

v

v

v

•p •p

• A collocated variable storage allows for arbitrary meshes.
▷ Trivial application to arbitrary meshes.
▷ But: naive implementation can lead to pressure-velocity

decoupling.
•p,u,v •p,u,v
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Momentum weighted interpolation

• Introduces a pressure dependency in the continuity equation.
• Yields a strong cell-to-cell pressure-velocity coupling.
• Allows us to solve the governing equations as part of a single linear system.

• The idea of Momentum Weighted Interpolation was first introduced by Rhie and
Chow (1983).

• This idea has been further developed in our work for multiphase flow calculations.
Denner & van Wachem, Num. Heat Transfer Part B 65-3 (2014), 218-255
Bartholomew et al., J. Comput. Phys. 375 (2018), 177-208
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Momentum weighted interpolation

Navier-Stokes equations

ρ
∂uj

∂t
+ ρ

∂

∂xi
(ui uj) = −

∂p

∂xj
+

∂τij

∂xi
− sj

∂

∂xi
ui = 0

Discretised Navier-Stokes equations

[
ρVP

∆t
+ aP

]
uj,P =

[∑
nb

anb uj,nb

]
− VP

[∑
nb

bnb pnb + sj

]
+

[
ρVP

∆t

]
uO

j,P∑
f=faces

ui,f si,f =
∑

f=faces

ϑf = 0
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Momentum weighted interpolation

• The net force driving the flow is the pressure gradient and sources,

Net driving force
∂̃p

∂xj
=

[
∂p

∂xj
− sj

]

• With this, the discretised equation becomes:

Discretised Momentum equations

[
1 +

ρ

∆t

VP

aP

]
uj,P =

{[∑
nb

anb uj,nb

]
aP

}
− VP

[
∂̃p

∂xj

]
P

aP
+

[
ρ

∆t

]
P

VP

aP
uO

j,P
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Momentum weighted interpolation

• Using the following

Abbreviations

cP = ρ

∆t
dP = VP

aP
ũj,P =

{
[
∑

nb anb uj,nb]
aP

}

• The discretised equation becomes

Momentum equations

[1 + cP dP ] uj,P = ũj,P − dP

[
∂̃p

∂xj

]
P

+ cP dP uO
j,P
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Momentum weighted interpolation

• Such a discretised equation for cell E can also be written out,

• then an analogous equation for location e′ can be constructed:

Momentum equation at e′

[1 + ce′ de′ ] uj,e′ = ũj,e′ − de′

[
∂̃p

∂xj

]
e′

+ ce′ de′uO
j,e′
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Momentum weighted interpolation
• Writing out the terms which are interpolated to e′,

U velocity at e′

uj,e′ = uj,P + uj,E

2 − de′

[1 + ce′ de′ ]

([
∂̃p

∂xj

]
e′

− 1
2

[
∂̃p

∂xj

]
P

− 1
2

[
∂̃p

∂xj

]
E

)
+ ce′ de′

[1 + ce′ de′ ]

(
uO

j,e′ − 1
2uO

j,P − 1
2uO

j,E

)
• There are various ways to go from e′ to e, for instance

From e′ to e

uj,e = uj,e′ + ∂uj

∂xi e′
(xi,e′ − xi,e)

• Now there is an analogous analytical expression for the face velocity which depends on
pressure.
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Momentum weighted interpolation

• This expression can be directly used in the continuity equation.

• ϑ = uf · nf , the flux at the face, is only needed.
▷ For a steady-state situation, the expression for ϑ does not depend on the time-step.

▷ The pressure terms are analogous to ∆2 ∂3p

∂x3 .
This is similar to a filter, which converges to zero with the same order as the discretisation.

• The expression can be used in a finite volume framework for any type of cell.
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Momentum weighted interpolation

• Advected variables discretised with TVD schemes
Denner & van Wachem, J. Comput. Phys. 298 (2015), 466

• Transient terms discretised with backward Euler scheme
▶ First-order or second-order backward Euler scheme
▶ Same scheme applied for all transient terms

• Advecting velocity evaluated with momentum-weighted interpolation
Bartholomew et al., J. Comput. Phys. 375 (2018), 177
▶ Pressure-velocity coupling for low-Mach flows
▶ Source terms require special reconstruction to ensure force balance

Advecting velocity

ϑf = uf nf − d̂f

(
∇pf − ∇pf

)
sf + d̂f

(
Sf − Sf

)
sf + d̂f

ρf

∆t

(
ϑO

f − uO
f nf

)
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Solution procedure

• Governing flow equations solved in single equation system
▶ Robust even for large pressure or density discontinuities

• No underrelaxation necessary
• Solved using the PETSc library

▶ Block-Jacobi preconditioner
▶ BiCGStab solver

Linear system of equations
Au Av Aw Ap 0
Bu Bv Bw Bp 0
Cu Cv Cw Cp 0
Du Dv Dw Dp 0
Eu Ev Ew Ep Eh

 ·


ϕu

ϕv

ϕw

ϕp

ϕh

 = b

Momentum x
Momentum y
Momentum z
Continuity
Energy
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History
• Three versions of MultiFlow:

▶ All versions are based around the structure of PETSc
KSP Solver, Vec, Ghost update, etc.

1. MultiFlow 1 (since 2004)
Block structured, static mesh, “one iteration per timestep”.

▶ based on multiple interconnected DMDA structures
▶ uses PETSc binary file format
▶ translation to/from VTK done externally

2. MultiFlow 2 (since 2013)
Polyhedral, static mesh.

▶ in-house mesh handling routines
▶ partitioning with Parmetis
▶ HDF5 file format (directly read by Paraview with XDMF reader)

3. MultiFlow 3 (since 2019)
Unstructured/block structured/polyhedral, adaptive mesh.

▶ Mesh handling based on DMPlex routines.
▶ Adaptive refinement based on DMForest/p4est framework.
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Examples of applications
Fully resolved particulate flows: IBM simulation

• Conducted in MultiFlow 2.
• Solid bodies modelled with IBM.
• O(103) particles.
• No-slip condition enforced with momentum sources

in the region surrounding the moving bodies.
• Fully resolved particulate flows but . . . very

expensive!
▷ Motivation for MultiFlow 3.
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Examples of applications
Large scale fluidised bed: Euler-Lagrange simulation

• Conducted in MultiFlow 1.
• O(106) particles.
• Flow at the scale of the

Lagrangian point particles is
not resolved.

• Flow and particles are coupled
via momentum transfer and
volume fraction contribution.

• Individual particle motion
solved separately within
overlapping Cartesian mesh.
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Examples of applications

Atomising swirling spray

• Conducted in MultiFlow 2.
• O(107) mesh cells.
• But resolution of all scales would require (much)

larger mesh!
▷ Motivation for MultiFlow 3.
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Examples of applications: MF3

Micro-scale particle laden flow

• Conducted in our new MultiFlow 3!
• Increasing of resolution where needed with p4est.
• Refinement is based on vorticity.
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Examples of applications: MF3

Micro-scale particle laden flow

• Conducted in MultiFlow 3.
• Moving to O(103) particles and

O(107) mesh cells.
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MultiFlow 3: implementation

Specifications
We aim to have a coupled framework that:

→ solves the (in)compressible Navier-Stokes equations in the presence of large source term and
volume fraction gradients,

→ is designed for arbitrary computational domains,
→ can adapt the mesh where resolution is needed

(e.g. at the interface between two fluids, near an immersed boundary)
→ accounts for the specificities of multiphase flow modelling

Used frameworks:
• the DMPlex routines/framework
• the DMForest/p4est framework
• the I/O routines for mesh and data
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MultiFlow 3: implementation

DMPlex usage
1. For the “coupled” Vector, we create a DMPlexCreateSection with ≥ 4 fields.
2. For the other Vectors, we copy the DMPlexCreateSection and set fields to 1.
3. If necessary, we couple the DMPlex object to the DMForest object with DMConvert.
4. For efficiently tracking particles or interfaces, we use a DMDA “particle-mesh”.
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MultiFlow 3: implementation

Challenges
• We are not computer scientists, and it is hard to understand the details of DMPlex
• As we do our own discretisation, some DMPlex frameworks are superfluous, but still need to be dealt with

(e.g., the FE discretisation object).
• Some DMPlex implementations do not match our needs, e.g. HDF-5 output and DMPlexCreateBoxMesh.
• We have had to implement our own AMR-related routines for:

▶ Computing and storing geometric mesh properties.
▶ Interpolating from coarse to fine grids.
▶ Handling hanging-nodes in the context of finite-volumes.

• We are struggling with the restart of AMR simulations.
• There is a bug in the combination of DMPlex/P4est for periodic meshes.
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MultiFlow 3: implementation

More details
• Bartholomew, P., Denner, F., Abdol-Azis, M.H., Marquis, A., van Wachem, B, 2018. Unified formulation of the

momentum-weighted interpolation for collocated variable arrangements. Journal of Computational Physics
375, 177-208.

• Denner, F., Evrard, F., van Wachem, B., 2020. Conservative finite-volume framework and pressure-based
algorithm for flows of incompressible, ideal-gas and real-gas fluids at all speeds. Journal of Computational
Physics 409, 109348.

• Evrard, F., Denner, F., van Wachem, B., 2020. Euler-Lagrange modelling of dilute particle-laden flows with
arbitrary particle-size to mesh-spacing ratio. Journal of Computational Physics 8, 100078.

• Cheron, V., Evrard, F., van Wachem, B., 2023. A hybrid immersed boundary method for dense particle-laden
flows. Computers & Fluids 105892.

• https://www.mvt.ovgu.de/Publications.html
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