
Some thoughts on the future of PETSc

Barry Smith

PETSc still does what it does well, but ...

Early Decisions (1994)
• All-in on MPI

• Single-core compute nodes (no explicit thread support)

• C

• Native Fortran binding

• Delay decisions to runtime - "because I don't know what the correct choices are"

• Dynamic Object Orientation

• Runtime polymorphism (no templates/code generation)

• All objects delegate

• Options Database

• Little support for array operations (DMDA, PetscSection)

• No support for user thread parallelism with PETSc MPI parallelism

• Easily extendable to new methods, solver families etc

??

??

??

??

Last five years' time wasters

• The need to focus on utilizing GPUs left little time to add new features, and
solver types.

• Supporting portability, language/compiler changes (picky C++/for GPUs)

The race to keep up with hardware/software changes slows
adding new features

Moving Forward
• Simulation within outer loops (we've been saying this for many years but making little progress)

• simulation-constrained optimization (introduces MPI unfriendly long-and-skinny data structures)

• simulation-based probability and statistics (tools are often written in custom languages)

• Simulation plus ML

• data structure (tensors to PETSc) interoperability

• batching in PETSc

• The above requires derivatives (algorithmic, automatic differentiation, ..), except for TSAdjoint, PETSc
provides little support

• A more systematic approach to hardware portability

• Abstractions for data structures and operations on data structures?

Can we engage people from related communities to assist in moving PETSc forward?

