
High-order FEM implementation in
AMReX using PETSc

PETSc User Meeting – 6th June 2023

Karthik Chockalingham, Alex Grant, Xiaohu Guo

Summary
• Introduction

• AMReX, motivation, use of AMReX data structures

• Implementing FEM in AMReX (amrPX)

• Poisson – simplest case, refinement, higher order

• Initial performance results

• Time-dependent problems - heat equation, Navier-stokes

• Challenges and next steps

AMReX overview

AMReX is an ECP-funded C++ software
framework to support the development of block-
structured AMR applications

• Multiple levels at increasing spatial and temporal

resolution, each solved independently

• Higher levels sit on top of lower levels

• Each level is comprised of a set of rectangular boxes

• Base level is fixed and covers the whole domain, higher

levels change dynamically as the simulation evolves

Level 0

Level 1 (8x refinement)

Motivation for FEM in AMReX

• First-ever C++ implementation of FEM with AMReX

• Performance benefits of structured vs unstructured

grids

• Collaboration with UKAEA on fusion research

• Developing high-order FEM particle-in-cell for simulation of edge
plasma physics

• Developing embedded boundary functionality for complex
geometries

• Current UKAEA production codes have issues with locating
particles on an unstructured grid

• Using a structured grid makes locating particles easy

AMReX data structures
• AMReX has cell-centered or nodal

data, split into boxes

• Each cell/node has unique index in

each coordinate direction (0 to n-1,
0 to 2n-1), boxes are defined from
low cell to high cell

• For FEM, we use cell-centered
boxes to iterate over elements,
nodal boxes to store data,
interpolate between levels,
indexing

Cell-centered data Nodal data

AMReX data structures

• For higher-order elements, can
map cell-centered boxes to
refined nodal data (up to the
implementation, not AMReX)

• Node locations within the
element might not be correct,
but implementation doesn’t
need this, just needs to store
the dataCell-centered data Nodal data

AMReX data structures

Cell-centered data Nodal data

• For higher-order elements, can
map cell-centered boxes to
refined nodal data (up to the
implementation, not AMReX)

• Node locations within the
element might not be correct,
but implementation doesn’t
need this, just needs to store
the data

AMReX data structures

Cell-centered data Nodal data

Coordinate transformation (only once per level)

Poisson problem

Simplest case – linear, no refinement

• Comparison with MFEM shows
we are getting the correct result

• Covering entire domain means
number of nodes is known,
single solve

• Higher levels will not cover
entire domain, need to be
solved independentlyamrPX output MFEM output

amrFEM is up to 37% faster compared to mfem

Comparing amrFEM and mfem

Majority of the computational cost saved in amrFEM is due all elements having
the same dimension and straightforward indexing scheme of the elements.

Verified with mfem

De Cicco, Davide. Taheri, Farid, Applied Sciences (2018)

Nils Dietrisch Zander, Ph.D. dissertation, Technischen Universität München (2016)

Principle of superposition is widely used to model
fracture using XFEM

Superposition

Refined Poisson problem
1. Convert cell-centred grid to nodal

2. Solve the problem on the current level

3. Generate the new level (cell -> nodal)

4. Inactivate ‘covering’ nodes and nodes on

level boundaries

5. Solve the problem at the refined level

6. Interpolate the solution from the lower

level to the higher level

7. Add the interpolated solution to the

refined solution

Implementation – Matrix Assembly

• Use AMReX indexing (covering entire domain at all
levels) as basis for the global node ID

• Do initially assign some memory for all points, but
start by assuming everything is inactive – i.e.
single entry of 0

• Go through all active elements on a level and re-
allocate memory just for the active elements, then
assemble using MATMPIAIJ

• Use ‘redistribute’ preconditioner to remove null
elements in the solve

Integrated Legendre polynomial

Image from Nils Dietrisch Zander, Ph.D. dissertation, Technischen Universität München (2016)

Legendre polynomials (Spectral elements)

Integrated Legendre polynomials (Hierarchical elements)

Output of second order integrated Legendre
polynomial implementation

on a 256 x 256 mesh

The number of nodes stays constant as the polynomial
order increases, only additional edge and face modes

Higher order implementation (on a uniform mesh) using 
Integrated Legendre polynomials

Time-dependent problems

• Heat equation fully implemented

• Time discretization via Backward Euler

• First order only, no refinement yet.

• Solution matches with existing

established unstructured FEM package
(MFEM)

Time-dependent problems

• Navier-Stokes implementation underway

• Channel flow test case

• Chorin’s scheme

• Matching step by step with MOOSE

Challenges

Need to get PETSc to match AMReX’s data partitioning

• PETSc results needed in AMReX for file output, assembly at next

timestep, AMReX mesh refinement functions	(e.g. interpolation)

• Current workaround is to scatter results to all processes – not

ideal

• IS index scheme, DM methods, other options?

• Halo/shared nodes – how to get non-local data

(VecCreateGhost)?

• PETSc local assembly without using stashing

Challenges

Higher order AND multi-level refinement

• Higher order nodes/edges would conflict with higher level nodes

• Once area for refinement is determined, need to re-do existing level

with refined areas linearized

• Reduces performance advantage of structured grids

Challenges

GPU development

• Want to be easy-to-use and portable

• Using AMReX, PETSc, Hypre and Eigen – all need to be built

together with support for GPU

• Performance portability – memory management

Next steps

• Code redevelopment – make more general and flexible.
Currently a lot is hard-coded

• Implementation of ‘Blob2D’ fusion test case (https://
hermes3.readthedocs.io/en/latest/examples.html#d-drift-plane)

Solve for the electron density, pressure, vorticity, connection length

https://hermes3.readthedocs.io/en/latest/examples.html#d-drift-plane
https://hermes3.readthedocs.io/en/latest/examples.html#d-drift-plane
https://hermes3.readthedocs.io/en/latest/examples.html#d-drift-plane
https://hermes3.readthedocs.io/en/latest/examples.html#d-drift-plane

Summary

• Proof of concept for the first working C++ FEM implementation
in AMReX

• Working towards a real use-case (fusion applications)

• Dynamic multi-level hp-refinement is a capability uniquely suited

to AMReX

• Will be open-source (but needs code restructuring first)

Thank you

hartree.stfc.ac.uk hartree@stfc.ac.uk@HartreeCentre STFC Hartree Centre

