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AMReX overview

AMReX is an ECP-funded C++ software 
framework to support the development of block-
structured AMR applications

• Multiple levels at increasing spatial and temporal 

resolution, each solved independently

• Higher levels sit on top of lower levels

• Each level is comprised of a set of rectangular boxes

• Base level is fixed and covers the whole domain, higher 

levels change dynamically as the simulation evolves

Level 0

Level 1 (8x refinement)



Motivation for FEM in AMReX

• First-ever C++ implementation of FEM with AMReX

• Performance benefits of structured vs unstructured 

grids 

• Collaboration with UKAEA on fusion research


• Developing high-order FEM particle-in-cell for simulation of edge 
plasma physics


• Developing embedded boundary functionality for complex 
geometries


• Current UKAEA production codes have issues with locating 
particles on an unstructured grid


• Using a structured grid makes locating particles easy



AMReX data structures
• AMReX has cell-centered or nodal 

data, split into boxes

• Each cell/node has unique index in 

each coordinate direction (0 to n-1, 
0 to 2n-1), boxes are defined from 
low cell to high cell


• For FEM, we use cell-centered 
boxes to iterate over elements, 
nodal boxes to store data, 
interpolate between levels, 
indexing

Cell-centered data Nodal data



AMReX data structures

• For higher-order elements, can 
map cell-centered boxes to 
refined nodal data (up to the 
implementation, not AMReX)


• Node locations within the 
element might not be correct, 
but implementation doesn’t 
need this, just needs to store 
the dataCell-centered data Nodal data



AMReX data structures

Cell-centered data Nodal data

• For higher-order elements, can 
map cell-centered boxes to 
refined nodal data (up to the 
implementation, not AMReX)


• Node locations within the 
element might not be correct, 
but implementation doesn’t 
need this, just needs to store 
the data



AMReX data structures

Cell-centered data Nodal data



Coordinate transformation (only once per level)

Poisson problem



Simplest case – linear, no refinement

• Comparison with MFEM shows 
we are getting the correct result


• Covering entire domain means 
number of nodes is known, 
single solve


• Higher levels will not cover 
entire domain, need to be 
solved independentlyamrPX output MFEM output



amrFEM is up to 37% faster compared to mfem

Comparing amrFEM and mfem

Majority of the computational cost saved in amrFEM is due all elements having 
the same dimension and straightforward indexing scheme of the elements.

Verified with mfem



De Cicco, Davide. Taheri, Farid,  Applied Sciences (2018)

Nils Dietrisch Zander, Ph.D. dissertation, Technischen Universität München (2016)

Principle of superposition is widely used to model 
fracture using XFEM

Superposition



Refined Poisson problem
1. Convert cell-centred grid to nodal

2. Solve the problem on the current level

3. Generate the new level (cell -> nodal)

4. Inactivate ‘covering’ nodes and nodes on 

level boundaries

5. Solve the problem at the refined level

6. Interpolate the solution from the lower 

level to the higher level

7. Add the interpolated solution to the 

refined solution



Implementation – Matrix Assembly

• Use AMReX indexing (covering entire domain at all 
levels) as basis for the global node ID 


• Do initially assign some memory for all points, but 
start by assuming everything is inactive – i.e. 
single entry of 0


• Go through all active elements on a level and re-
allocate memory just for the active elements, then 
assemble using MATMPIAIJ


• Use ‘redistribute’ preconditioner to remove null 
elements in the solve



Integrated Legendre polynomial 

Image from Nils Dietrisch Zander, Ph.D. dissertation, Technischen Universität München (2016)

Legendre polynomials (Spectral elements)

Integrated Legendre polynomials (Hierarchical elements) 



Output of second order integrated Legendre 
polynomial implementation

on a 256 x 256 mesh 

The number of nodes stays constant as the polynomial 
order increases, only additional edge and face modes

Higher order implementation (on a uniform mesh) using 
Integrated Legendre polynomials



Time-dependent problems

• Heat equation fully implemented


• Time discretization via Backward Euler

• First order only, no refinement yet.

• Solution matches with existing 

established unstructured FEM package 
(MFEM)



Time-dependent problems

• Navier-Stokes implementation underway

• Channel flow test case

• Chorin’s scheme

• Matching step by step with MOOSE



Challenges

Need to get PETSc to match AMReX’s data partitioning

• PETSc results needed in AMReX for file output, assembly at next 

timestep, AMReX mesh refinement functions	(e.g. interpolation)

• Current workaround is to scatter results to all processes – not 

ideal

• IS index scheme, DM methods, other options?

• Halo/shared nodes – how to get non-local data 

(VecCreateGhost)?

• PETSc local assembly without using stashing



Challenges

Higher order AND multi-level refinement

• Higher order nodes/edges would conflict with higher level nodes

• Once area for refinement is determined, need to re-do existing level 

with refined areas linearized

• Reduces performance advantage of structured grids



Challenges

GPU development

• Want to be easy-to-use and portable

• Using AMReX, PETSc, Hypre and Eigen – all need to be built 

together with support for GPU

• Performance portability – memory management



Next steps

• Code redevelopment – make more general and flexible.  
Currently a lot is hard-coded


• Implementation of ‘Blob2D’ fusion test case (https://
hermes3.readthedocs.io/en/latest/examples.html#d-drift-plane)


Solve for the electron density, pressure, vorticity, connection length

https://hermes3.readthedocs.io/en/latest/examples.html#d-drift-plane
https://hermes3.readthedocs.io/en/latest/examples.html#d-drift-plane
https://hermes3.readthedocs.io/en/latest/examples.html#d-drift-plane
https://hermes3.readthedocs.io/en/latest/examples.html#d-drift-plane


Summary

• Proof of concept for the first working C++ FEM implementation 
in AMReX


• Working towards a real use-case (fusion applications)

• Dynamic multi-level hp-refinement is a capability uniquely suited 

to AMReX

• Will be open-source (but needs code restructuring first)
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