
Scalable Riemann Solvers with the Discontinuous
Galerkin Method for Hyperbolic Network

Simulation

Aidan Hamilton 1 Jing-Mei Qiu 1 Hong Zhang 2

1University of Delaware

2Illinois Institute of Technology

June 7, 2023

Table of Contents

Introduction: What are Hyperbolic Networks?

Implementation

Numerical Results

Hyperbolic Conservation Laws on a Network

A network is a topological graph, i.e a couple (V ,E) where

▶ E is a collection of intervals [ae , be]

▶ V a collection of vertices connecting the intervals

A system of conservation laws
naturally extends to a network
edgewise

∂tue + ∂x f (ue) = 0,

▶ ue ∈ Rm

▶ f : Rm → Rm

▶ Only considering m = 1, 2

▶ Challenge is coupling the 1D
problems at vertices

v1v2

v3

v4

e1

e 2

e
3

be1ae1

Conservation Laws: Examples

Shallow Water (SWE):

∂th + ∂x(hν) = 0,

∂thν + ∂x(hν
2 +

g

2
h2) = 0,

▶ h(x , t) : water height

▶ ν(x , t) : water velocity

The Jacobian of the flux function
has eigenvalues:

λ1(u) = ν−
√
gh, λ2(u) = ν+

√
gh

The system is fluvial if |ν| < √
gh,

λ1 < 0, λ2 > 0.

LWR Traffic Flow

∂tρ+ f (ρ)x = 0

▶ ρ(x , t) : density of cars

▶ ρ ∈ [0, 1] by normalization

▶ f is C 2 and strictly concave

▶ f (0) = f (1) = 0

▶ for my examples
f (ρ) = 4ρ(1− ρ)

1D Riemann Problem
A Riemann problem for a 1D hyperbolic conservation law is the
PDE with a jump initial condition

u0(x) =

{
uL, x < 0,

uR , x > 0,

For 2× 2 systems solutions take the form

0

t

x

λ1 λ2

u∗

uL uR

1D Riemann Problem II
The star state u∗ is found by:

▶ finding the intersection of two nonlinear curves in phase space
▶ the curves are points that can be connected to uL, uR by

shock/rarefaction waves.

For the shallow water equations these solutions look like

1.8 2 2.2 2.4 2.6 2.8 3 3.2

−8

−6

−4

−2

0

2

uL uR

u∗

h

h
ν

Nonlinear Curves
Eigenvectors

Riemann Problem at a Vertex
Riemann Problem at a Vertex va

∂tue + ∂x f (ue) = 0, t ∈ R+, e ∈ E(v)

ue(x , t = 0) = ue , x ∈
{
R+ e outgoing
R− e incoming

where ue are constant states.
▶ well-posedness requires an additional deg(v)

coupling conditions
▶ these are additional modeling choices

▶ For SWE a choiceb

h∗e = h∗e′ height continuity∑
e∈E(v),
incoming

ν∗e (v) =
∑

e∈E(v),
outgoing

ν∗e (v) conservation of mass

▶ Fundamental principle: Connect each ue to a
u∗e by a single wave-curve, that is outgoing
from the vertex.

aColombo, Herty, and Sachers, “On 2× 2
Conservation Laws at a Junction”.

bBriani, Benedetto Piccoli, and Qiu, “Notes on
RKDG Methods for Shallow-Water Equations in
Canal Networks”.

0.8 1 1.2 1.4 1.6 1.8 2 2.2

−2

0

2

4

ue0ue1

ue2

u∗e0

u∗e1

u∗e2

h

h
ν

1 Wave
2 Wave
2 Wave

Eigenvectors

Figure: Example SWE
Riemann problem for a
3-branch vertex.

LWR Riemman Problem

Model is an optimization problem1

▶ Consider a traffic distribution matrix A ∈ Routdeg(v)×indeg(v), where A1 = 1

▶ Dictates what proportion of cars moving into a vertex from incoming road
j , go to outgoing road i

▶ Let σ be the point that f attains its max, define function γmax

for incoming roads j

γmax
j (ρ) =

{
f (ρ), ρ ≤ σ

f (σ), ρ > σ.

for outgoing roads i

γmax
i (ρ) =

{
f (σ), ρ ≤ σ

f (ρ), ρ > σ.

▶ Full problem, maximize flux through the vertex

max f (ρ∗j)

f (ρ∗j) ∈ [0, γmax (ρj)] for j incoming

A(f (ρ∗j)) ∈ [0, γmax (ρ0)]× . . .× [0, γmax (ρoutdeg(v))]

▶ Solve in PETSc using TAO ALLM

1Garavello and B. Piccoli, Traffic Flow on Networks: Conservation Laws Models.

Discretization

1. Discretize along edges using the standard RKDG framework.
▶ Per element Ij evolve∫

Ij

v∂tuhdx =

∫
Ij

f (uh)∂xvdx

−
(
f̂j+ 1

2
v−|x

j+ 1
2

− f̂j− 1
2
v+|x

j− 1
2

)
,

where v , uh ∈ Pk(Ij), and f̂ is the numerical flux.
▶ Evolve with explicit SSP RK methods (TSSSP)
▶ Use a characteristic-wise TVB slope limiter for stability

(TSPostStage)

2. Solve network Riemann problem at vertices to get boundary
fluxes.

Implementation Overview

▶ DMNetwork:
manage distributed
network

▶ NetRiemannProblem:
specify and solve local
vertex Riemann problems

▶ NetRiemannSolver:
scalably solve a collection
of NetRiemannProblems on
vertices of a DMNetwork.

NetRiemannSolver

DMNetwork
(Network Topology) NetRiemannProblem

Newly Added Class

Existing PETSc Class
at

network
vertices

SNES
(Nonlinear Solvers)

KSP
(Linear Solvers)

TAO
(Optimization Solvers)

v3v2

v0

v1

v3

v4

v5

Processor 0 Processor 1

Distributed Vertex Riemann Solver

Vertex
Riemann
Solver on
v3 with its
domain of
dependence

NetRiemannProblem: Solver Reuse

▶ The problem: Every vertex Riemann problem requires some
sort of PETSc solver, SWE (SNES), Traffic (TAO).

▶ Thankfully, Riemann problem structures (Jacobians etc..) only
depend on the vertex degree.

▶ Solution Solver objects can be cached and reused. Have
maps:
▶ (SWE) deg(v) → SNES
▶ (Traffic) (indeg(v), outdeg(v)) → TAO

▶ Can reuse symbolic solves in direct LU factorization

NetRiemannSolver: How it’s used

Setup

1. Given a DMNetwork, it creates a cloned copy

2. NetRiemannProblem objects can be assigned to the vertices of DMNetwork

3. NetRiemannSolver generates a PetscSection and corresponding Vec for the
Riemann problems at each assigned vertex.

Solve

1. The local Riemann data for are
set into the Vec
(NetRiemannSolver handles
indexing, not PetscSection)

2. NetRiemannSolver then solves all
Riemann problems

▶ basic interlacing, solve local
Riemann problems while
waiting for communication
of nonlocal Riemann data

▶ optional SolveBegin; . . .
SolveEnd; interface for
further interlacing

v3v2

v0

v1

v3

v4

v5

Processor 0 Processor 1

Distributed Vertex Riemann Solver

Vertex
Riemann
Solver on
v3 with its
domain of
dependence

RHS Evaluation Algorithm

Algorithm 1 DG RHS Evaluation for a Hyperbolic Network
for vertex v in DMNetwork do

for e ∈ E(v) do
Evaluate ue(v)
Place ue(v) in NetRiemannSolver

end for
end for
NetRiemannSolverSolveBegin() ▷ Communication here
for Edge e in DMNetwork do

for Cell c in edge e do
DG update (not vertex fluxes)

end for
end for
NetRiemannSolverSolveEnd() ▷ Communication here

▷ All vertex fluxes f̂v are now available
for Edge e in DMNetwork do

Update boundary fluxes using f̂v
end for

SWE Convergence Test

v1v2

v3

v4

e1

e 2

e
3

Initial Data

h1(x , 0) = 1 + e−5(x−9)2 ,

h1ν1(x , 0) = h1(x , 0)/2,

h2(x , 0) = h3(x , 0) = 1 + e−5(10−9)2 ,

h2ν2(x , 0) = h3ν3(x , 0) = h2(x , 0)/4.

2−5 2−4 2−3 2−2 2−1 20 21

10−6

10−4

10−2

100

h

L
2
E
rr
or

ErrorP0

Order 1

ErrorP1

Order 2

ErrorP2

Order 3

ErrorP3

Order 4

Dam Break on Shallow Water Network

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17
e0

Figure: Grid graph variant used in the dam break test

Traffic Network Example

0 1

2

3

4

5

6

7

e0

Figure: Traffic Circle Network

Scalable Simulation of Mississippi River Network

▶ Simulate SWE on the Mississippi
river system, with data obtained
from the NHDPlus dataseta

▶ contains 892,740 edges and
872,300 vertices

▶ Discretize with elements of length
10m (the resolution of the
dataset), P2 basis and a 5-stage
SSPRK2 methodb, with ≈ 109

degrees of freedom.

▶ Simulation conducted on the Theta
supercomputer at ALCF. Theta has
4,392 nodes, each with 64 1.3GHz
Intel Xeon Phi 7230 cores with 16
GiB of MCDRAM per node.

aMcKay et al., “NHDPlus Version 2:
user guide”.

bKetcheson, “Highly Efficient Strong
Stability-Preserving Runge–Kutta
Methods with Low-Storage
Implementations”.

256 512 1,024 2,048 4,096 8,192

10−1

100

101

102

Number of Cores

W
al
l-
C
lo
ck

T
im

e
(s
)

Edge DG

NetRiemannSolver

DG Limiter

Time Step

RHS Eval

Slope -1

Future Work

1. Implement Blood Flow Networks

2. Large scale simulation for traffic flow

3. General code improvements. Move out of a PETSc branch
into its own separate thing.

4. Move various pieces of my work into PETSc, particular
DMNetwork improvements.

References

Briani, Maya, Benedetto Piccoli, and Jing-Mei Qiu. “Notes on RKDG Methods
for Shallow-Water Equations in Canal Networks”. In: J. Sci. Comput. 68.3 (Sept.
2016), pp. 1101–1123. issn: 0885-7474. doi: 10.1007/s10915-016-0172-2. url:
https://doi.org/10.1007/s10915-016-0172-2.

Colombo, R. M., M. Herty, and V. Sachers. “On 2× 2 Conservation Laws at a
Junction”. In: SIAM Journal on Mathematical Analysis 40.2 (2008), pp. 605–622.
doi: 10.1137/070690298. eprint: https://doi.org/10.1137/070690298. url:
https://doi.org/10.1137/070690298.

Garavello, M. and B. Piccoli. Traffic Flow on Networks: Conservation Laws
Models. AIMS series on applied mathematics. American Institute of Mathematical
Sciences, 2006. isbn: 9781601330000. url:
https://books.google.com/books?id=LVwYAwAACAAJ.

Ketcheson, David I. “Highly Efficient Strong Stability-Preserving Runge–Kutta
Methods with Low-Storage Implementations”. In: SIAM Journal on Scientific
Computing 30.4 (2008), pp. 2113–2136. doi: 10.1137/07070485X. eprint:
https://doi.org/10.1137/07070485X. url:
https://doi.org/10.1137/07070485X.

McKay, L et al. “NHDPlus Version 2: user guide”. In: National Operational
Hydrologic Remote Sensing Center, Washington, DC (2012).

https://doi.org/10.1007/s10915-016-0172-2
https://doi.org/10.1007/s10915-016-0172-2
https://doi.org/10.1137/070690298
https://doi.org/10.1137/070690298
https://doi.org/10.1137/070690298
https://books.google.com/books?id=LVwYAwAACAAJ
https://doi.org/10.1137/07070485X
https://doi.org/10.1137/07070485X
https://doi.org/10.1137/07070485X

	Introduction: What are Hyperbolic Networks?
	Implementation
	Numerical Results
	References

