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Hyperbolic Conservation Laws on a Network

A network is a topological graph, i.e a couple (V ,E ) where

▶ E is a collection of intervals [ae , be ]

▶ V a collection of vertices connecting the intervals

A system of conservation laws
naturally extends to a network
edgewise

∂tue + ∂x f (ue) = 0,

▶ ue ∈ Rm

▶ f : Rm → Rm

▶ Only considering m = 1, 2

▶ Challenge is coupling the 1D
problems at vertices
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Conservation Laws: Examples

Shallow Water (SWE):

∂th + ∂x(hν) = 0,

∂thν + ∂x(hν
2 +

g

2
h2) = 0,

▶ h(x , t) : water height

▶ ν(x , t) : water velocity

The Jacobian of the flux function
has eigenvalues:

λ1(u) = ν−
√
gh, λ2(u) = ν+

√
gh

The system is fluvial if |ν| < √
gh,

λ1 < 0, λ2 > 0.

LWR Traffic Flow

∂tρ+ f (ρ)x = 0

▶ ρ(x , t) : density of cars

▶ ρ ∈ [0, 1] by normalization

▶ f is C 2 and strictly concave

▶ f (0) = f (1) = 0

▶ for my examples
f (ρ) = 4ρ(1− ρ)



1D Riemann Problem
A Riemann problem for a 1D hyperbolic conservation law is the
PDE with a jump initial condition

u0(x) =

{
uL, x < 0,

uR , x > 0,

For 2× 2 systems solutions take the form
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1D Riemann Problem II
The star state u∗ is found by:

▶ finding the intersection of two nonlinear curves in phase space
▶ the curves are points that can be connected to uL, uR by

shock/rarefaction waves.

For the shallow water equations these solutions look like
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Riemann Problem at a Vertex
Riemann Problem at a Vertex va

∂tue + ∂x f (ue) = 0, t ∈ R+, e ∈ E(v)

ue(x , t = 0) = ue , x ∈
{
R+ e outgoing
R− e incoming

where ue are constant states.
▶ well-posedness requires an additional deg(v)

coupling conditions
▶ these are additional modeling choices

▶ For SWE a choiceb

h∗e = h∗e′ height continuity∑
e∈E(v),
incoming

ν∗e (v) =
∑

e∈E(v),
outgoing

ν∗e (v) conservation of mass

▶ Fundamental principle: Connect each ue to a
u∗e by a single wave-curve, that is outgoing
from the vertex.

aColombo, Herty, and Sachers, “On 2× 2
Conservation Laws at a Junction”.

bBriani, Benedetto Piccoli, and Qiu, “Notes on
RKDG Methods for Shallow-Water Equations in
Canal Networks”.
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Figure: Example SWE
Riemann problem for a
3-branch vertex.



LWR Riemman Problem

Model is an optimization problem1

▶ Consider a traffic distribution matrix A ∈ Routdeg(v)×indeg(v), where A1 = 1

▶ Dictates what proportion of cars moving into a vertex from incoming road
j , go to outgoing road i

▶ Let σ be the point that f attains its max, define function γmax

for incoming roads j

γmax
j (ρ) =

{
f (ρ), ρ ≤ σ

f (σ), ρ > σ.

for outgoing roads i

γmax
i (ρ) =

{
f (σ), ρ ≤ σ

f (ρ), ρ > σ.

▶ Full problem, maximize flux through the vertex

max f (ρ∗j )

f (ρ∗j ) ∈ [0, γmax (ρj )] for j incoming

A(f (ρ∗j )) ∈ [0, γmax (ρ0)]× . . .× [0, γmax (ρoutdeg(v))]

▶ Solve in PETSc using TAO ALLM

1Garavello and B. Piccoli, Traffic Flow on Networks: Conservation Laws Models.



Discretization

1. Discretize along edges using the standard RKDG framework.
▶ Per element Ij evolve∫

Ij

v∂tuhdx =

∫
Ij

f (uh)∂xvdx

−
(
f̂j+ 1

2
v−|x

j+ 1
2

− f̂j− 1
2
v+|x

j− 1
2

)
,

where v , uh ∈ Pk(Ij), and f̂ is the numerical flux.
▶ Evolve with explicit SSP RK methods (TSSSP)
▶ Use a characteristic-wise TVB slope limiter for stability

(TSPostStage)

2. Solve network Riemann problem at vertices to get boundary
fluxes.



Implementation Overview

▶ DMNetwork:
manage distributed
network

▶ NetRiemannProblem:
specify and solve local
vertex Riemann problems

▶ NetRiemannSolver:
scalably solve a collection
of NetRiemannProblems on
vertices of a DMNetwork.
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NetRiemannProblem: Solver Reuse

▶ The problem: Every vertex Riemann problem requires some
sort of PETSc solver, SWE (SNES), Traffic (TAO).

▶ Thankfully, Riemann problem structures (Jacobians etc..) only
depend on the vertex degree.

▶ Solution Solver objects can be cached and reused. Have
maps:
▶ (SWE) deg(v) → SNES
▶ (Traffic) (indeg(v), outdeg(v)) → TAO

▶ Can reuse symbolic solves in direct LU factorization



NetRiemannSolver: How it’s used

Setup

1. Given a DMNetwork, it creates a cloned copy

2. NetRiemannProblem objects can be assigned to the vertices of DMNetwork

3. NetRiemannSolver generates a PetscSection and corresponding Vec for the
Riemann problems at each assigned vertex.

Solve

1. The local Riemann data for are
set into the Vec
(NetRiemannSolver handles
indexing, not PetscSection)

2. NetRiemannSolver then solves all
Riemann problems

▶ basic interlacing, solve local
Riemann problems while
waiting for communication
of nonlocal Riemann data

▶ optional SolveBegin; . . .
SolveEnd; interface for
further interlacing
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RHS Evaluation Algorithm

Algorithm 1 DG RHS Evaluation for a Hyperbolic Network
for vertex v in DMNetwork do

for e ∈ E(v) do
Evaluate ue(v)
Place ue(v) in NetRiemannSolver

end for
end for
NetRiemannSolverSolveBegin() ▷ Communication here
for Edge e in DMNetwork do

for Cell c in edge e do
DG update (not vertex fluxes)

end for
end for
NetRiemannSolverSolveEnd() ▷ Communication here

▷ All vertex fluxes f̂v are now available
for Edge e in DMNetwork do

Update boundary fluxes using f̂v
end for



SWE Convergence Test
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Initial Data

h1(x , 0) = 1 + e−5(x−9)2 ,

h1ν1(x , 0) = h1(x , 0)/2,

h2(x , 0) = h3(x , 0) = 1 + e−5(10−9)2 ,

h2ν2(x , 0) = h3ν3(x , 0) = h2(x , 0)/4.
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Dam Break on Shallow Water Network
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Figure: Grid graph variant used in the dam break test



Traffic Network Example
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Scalable Simulation of Mississippi River Network

▶ Simulate SWE on the Mississippi
river system, with data obtained
from the NHDPlus dataseta

▶ contains 892,740 edges and
872,300 vertices

▶ Discretize with elements of length
10m (the resolution of the
dataset), P2 basis and a 5-stage
SSPRK2 methodb, with ≈ 109

degrees of freedom.

▶ Simulation conducted on the Theta
supercomputer at ALCF. Theta has
4,392 nodes, each with 64 1.3GHz
Intel Xeon Phi 7230 cores with 16
GiB of MCDRAM per node.

aMcKay et al., “NHDPlus Version 2:
user guide”.

bKetcheson, “Highly Efficient Strong
Stability-Preserving Runge–Kutta
Methods with Low-Storage
Implementations”.
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Future Work

1. Implement Blood Flow Networks

2. Large scale simulation for traffic flow

3. General code improvements. Move out of a PETSc branch
into its own separate thing.

4. Move various pieces of my work into PETSc, particular
DMNetwork improvements.
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