Scalable Riemann Solvers with the Discontinuous Galerkin Method for Hyperbolic Network Simulation

Aidan Hamilton ¹ Jing-Mei Qiu ¹ Hong Zhang ²

¹University of Delaware

²Illinois Institute of Technology

June 7, 2023

Table of Contents

Introduction: What are Hyperbolic Networks?

Implementation

Numerical Results

Hyperbolic Conservation Laws on a Network

A **network** is a topological graph, i.e a couple (V, E) where

- ightharpoonup E is a collection of intervals $[a_e, b_e]$
- ▶ *V* a collection of vertices connecting the intervals

A system of conservation laws naturally extends to a network edgewise

$$\partial_t u_e + \partial_x f(u_e) = 0,$$

- $\mathbf{v}_{\mathbf{a}} \in \mathbb{R}^m$
- $f: \mathbb{R}^m \to \mathbb{R}^m$
- ▶ Only considering m = 1, 2
- ► Challenge is coupling the 1D problems at vertices

Conservation Laws: Examples

Shallow Water (SWE):

$$\begin{split} \partial_t h + \partial_x (h\nu) &= 0, \\ \partial_t h\nu + \partial_x (h\nu^2 + \frac{g}{2}h^2) &= 0, \end{split}$$

- \blacktriangleright h(x,t) : water height
- $\blacktriangleright \ \nu(x,t)$: water velocity

The Jacobian of the flux function has eigenvalues:

$$\lambda_1(u) = \nu - \sqrt{gh}, \qquad \lambda_2(u) = \nu + \sqrt{gh}$$

The system is *fluvial* if $|\nu| < \sqrt{gh}$, $\lambda_1 < 0$, $\lambda_2 > 0$.

LWR Traffic Flow

$$\partial_t \rho + f(\rho)_x = 0$$

- ightharpoonup
 ho(x,t) : density of cars
- $ho \in [0,1]$ by normalization
- ightharpoonup f is C^2 and strictly concave
- f(0) = f(1) = 0
- for my examples $f(\rho) = 4\rho(1-\rho)$

1D Riemann Problem

A Riemann problem for a 1D hyperbolic conservation law is the PDE with a jump initial condition

$$u_0(x) = \begin{cases} u_L, & x < 0, \\ u_R, & x > 0, \end{cases}$$

For 2×2 systems solutions take the form

1D Riemann Problem II

The star state u^* is found by:

- finding the intersection of two nonlinear curves in phase space
- ▶ the curves are points that can be connected to u_L , u_R by shock/rarefaction waves.

For the shallow water equations these solutions look like

Riemann Problem at a Vertex

Riemann Problem at a Vertex v^a

$$\begin{split} \partial_t u_e + \partial_x f(u_e) &= 0, \qquad t \in \mathbb{R}^+, e \in E(v) \\ u_e(x, t = 0) &= \overline{u}_e, \quad x \in \begin{cases} \mathbb{R}^+ & \text{e outgoing} \\ \mathbb{R}^- & \text{e incoming} \end{cases} \end{split}$$

where \overline{u}_e are constant states.

- well-posedness requires an additional deg(v) coupling conditions
- these are additional modeling choices
- ► For SWE a choice^b

$$\sum_{\substack{e \in E(v),\\ incoming}} \nu_e^*(v) = \sum_{\substack{e \in E(v),\\ outgoing}} \nu_e^*(v) \quad \text{ conservation of mass }$$

► Fundamental principle: Connect each \(\overline{u}_e \) to a \(u_e^* \) by a single wave-curve, that is outgoing from the vertex.

Figure: Example SWE Riemann problem for a 3-branch vertex.

 $[^]a$ Colombo, Herty, and Sachers, "On 2 \times 2 Conservation Laws at a Junction".

^bBriani, Benedetto Piccoli, and Qiu, "Notes on RKDG Methods for Shallow-Water Equations in

LWR Riemman Problem

Model is an optimization problem¹

- ▶ Consider a traffic distribution matrix $A \in \mathbb{R}^{\text{outdeg}(v) \times \text{indeg}(v)}$, where A1 = 1
 - Dictates what proportion of cars moving into a vertex from incoming road j, go to outgoing road i
- Let σ be the point that f attains its max, define function γ^{max} for incoming roads j for outgoing roads i

$$\gamma_j^{\max}(\rho) = \begin{cases} f(\rho), & \rho \le \sigma \\ f(\sigma), & \rho > \sigma. \end{cases} \qquad \gamma_i^{\max}(\rho) = \begin{cases} f(\sigma), & \rho \le \sigma \\ f(\rho), & \rho > \sigma. \end{cases}$$

Full problem, maximize flux through the vertex

$$\begin{split} & \max f(\rho_j^*) \\ & f(\rho_j^*) \in [0, \gamma^{max}(\rho_j)] \ \text{ for } j \text{ incoming} \\ & A(f(\rho_j^*)) \in [0, \gamma^{max}(\rho_0)] \times \ldots \times [0, \gamma^{max}(\rho_{\text{outdeg}(v)})] \end{split}$$

Solve in PETSc using TAO ALLM

¹Garavello and B. Piccoli, Traffic Flow on Networks: Conservation Laws Models.

Discretization

- 1. Discretize along edges using the standard RKDG framework.
 - \triangleright Per element I_i evolve

$$\int_{I_{j}} v \partial_{t} u_{h} dx = \int_{I_{j}} f(u_{h}) \partial_{x} v dx - \left(\hat{f}_{j+\frac{1}{2}} v^{-}|_{X_{j+\frac{1}{2}}} - \hat{f}_{j-\frac{1}{2}} v^{+}|_{X_{j-\frac{1}{2}}}\right),$$

- where $v, u_h \in P^k(I_j)$, and \hat{f} is the numerical flux.
- Evolve with explicit SSP RK methods (TSSSP)
- Use a characteristic-wise TVB slope limiter for stability (TSPostStage)
- 2. Solve network Riemann problem at vertices to get boundary fluxes.

Implementation Overview

- DMNetwork: manage distributed network
- NetRiemannProblem: specify and solve local vertex Riemann problems
- NetRiemannSolver: scalably solve a collection of NetRiemannProblems on vertices of a DMNetwork.

NetRiemannProblem: Solver Reuse

- ► **The problem:** Every vertex Riemann problem requires some sort of PETSc solver, SWE (SNES), Traffic (TAO).
- ► Thankfully, Riemann problem structures (Jacobians etc..) only depend on the vertex degree.
- Solution Solver objects can be cached and reused. Have maps:
 - ► (SWE) $deg(v) \rightarrow SNES$
 - ▶ (Traffic) (indeg(v), outdeg(v)) → TAO
- Can reuse symbolic solves in direct LU factorization

NetRiemannSolver: How it's used

Setup

- 1. Given a DMNetwork, it creates a cloned copy
- 2. NetRiemannProblem objects can be assigned to the vertices of DMNetwork
- 3. NetRiemannSolver generates a PetscSection and corresponding Vec for the Riemann problems at each assigned vertex.

Solve

- The local Riemann data for are set into the Vec (NetRiemannSolver handles indexing, not PetscSection)
- NetRiemannSolver then solves all Riemann problems
 - basic interlacing, solve local Riemann problems while waiting for communication of nonlocal Riemann data
 - optional SolveBegin; . . . SolveEnd; interface for further interlacing

Distributed Vertex Riemann Solver Vertex Riemann Solver on Solver on 34 with its domain of dependence

RHS Evaluation Algorithm

$\textbf{Algorithm 1} \ \mathsf{DG} \ \mathsf{RHS} \ \mathsf{Evaluation} \ \mathsf{for} \ \mathsf{a} \ \mathsf{Hyperbolic} \ \mathsf{Network}$

```
for vertex v in DMNetwork do
   for e \in E(v) do
       Evaluate u_e(v)
       Place u_e(v) in NetRiemannSolver
   end for
end for
NetRiemannSolverSolveBegin()
                                                                Communication here
for Edge e in DMNetwork do
   for Cell c in edge e do
       DG update (not vertex fluxes)
   end for
end for

    Communication here

NetRiemannSolverSolveEnd()
\triangleright All vertex fluxes \hat{f}_v are now available
for Edge e in DMNetwork do
   Update boundary fluxes using \hat{f}_{\nu}
end for
```

SWE Convergence Test

Initial Data

$$h_1(x,0) = 1 + e^{-5(x-9)^2},$$

 $h_1\nu_1(x,0) = h_1(x,0)/2,$

$$h_2(x,0) = h_3(x,0) = 1 + e^{-5(10-9)^2},$$

 $h_2\nu_2(x,0) = h_3\nu_3(x,0) = h_2(x,0)/4.$

Dam Break on Shallow Water Network

Figure: Grid graph variant used in the dam break test

Traffic Network Example

Figure: Traffic Circle Network

Scalable Simulation of Mississippi River Network

- Simulate SWE on the Mississippi river system, with data obtained from the NHDPlus dataset^a
- contains 892,740 edges and 872,300 vertices
- Discretize with elements of length 10m (the resolution of the dataset), P^2 basis and a 5-stage SSPRK2 method^b, with $\approx 10^9$ degrees of freedom.
- Simulation conducted on the Theta supercomputer at ALCF. Theta has 4,392 nodes, each with 64 1.3GHz Intel Xeon Phi 7230 cores with 16 GiB of MCDRAM per node.

^aMcKay et al., "NHDPlus Version 2: user guide".

^bKetcheson, "Highly Efficient Strong Stability-Preserving Runge–Kutta Methods with Low-Storage Implementations".

Future Work

- 1. Implement Blood Flow Networks
- 2. Large scale simulation for traffic flow
- 3. General code improvements. Move out of a PETSc branch into its own separate thing.
- 4. Move various pieces of my work into PETSc, particular DMNetwork improvements.

References

Briani, Maya, Benedetto Piccoli, and Jing-Mei Qiu. "Notes on RKDG Methods for Shallow-Water Equations in Canal Networks". In: *J. Sci. Comput.* 68.3 (Sept. 2016), pp. 1101–1123. ISSN: 0885-7474. DOI: 10.1007/s10915-016-0172-2. URL: https://doi.org/10.1007/s10915-016-0172-2.

Colombo, R. M., M. Herty, and V. Sachers. "On 2×2 Conservation Laws at a Junction". In: SIAM Journal on Mathematical Analysis 40.2 (2008), pp. 605–622. DOI: 10.1137/070690298. eprint: https://doi.org/10.1137/070690298. URL: https://doi.org/10.1137/070690298.

Garavello, M. and B. Piccoli. *Traffic Flow on Networks: Conservation Laws Models*. AIMS series on applied mathematics. American Institute of Mathematical Sciences, 2006. ISBN: 9781601330000. URL: https://books.google.com/books?id=LVwYAwAACAAJ.

Ketcheson, David I. "Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations". In: SIAM Journal on Scientific Computing 30.4 (2008), pp. 2113–2136. DOI: 10.1137/07070485X. eprint: https://doi.org/10.1137/07070485X. URL: https://doi.org/10.1137/07070485X.

McKay, L et al. "NHDPlus Version 2: user guide". In: National Operational Hydrologic Remote Sensing Center, Washington, DC (2012).